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Abstract

In Arbitrary Public Announcement Logic (APAL) an operator ⇤ is used. The in-
tended meaning of ⇤' is “for every  we have [ ]'.” However, for technical reasons
the semantics of APAL do not entirely match the intended meaning: in APAL the for-
mula ⇤' holds if and only if for every ⇤-free  we have [ ]'. Here we introduce Fully
Arbitrary Public Announcement Logic (F-APAL), where the semantics do match the
intended meaning: in F-APAL the formula ⇤' holds if and only if for every  we
have [ ]'.

Keywords: Dynamic Epistemic Logic, Public Announcements, Arbitrary Public
Announcements.

1 Introduction
One line of research in dynamic epistemic logic is to add “arbitrary” ver-
sions of dynamic operators. Examples of such logics include Arbitrary Public
Announcement Logic [4,5], Group Announcement Logic [1], Arbitrary Action
Model Logic [14], Refinement Modal Logic [9] and Arbitrary Arrow Update
Logic [11]. The intuition behind these arbitrary operators is that they repre-
sent universal quantification over their non-arbitrary counterpart.

As the title suggests, we will focus on Arbitrary Public Announcement Logic
(APAL). APAL is based on Public Announcement Logic (PAL) [6], but adds
an extra operator ⇤. 1 Intuitively, ⇤' is intended to mean “after every public

1 The symbol ⇤a is also often used for “agent a knows that. . . ” Here we use Ka to denote
the knowledge operator, and reserve ⇤ for arbitrary public announcement operators.
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announcement  , ' will hold.” So we would like ⇤ to satisfy the following
property:

M, w |= ⇤', 8 2 LAPAL : M, w |= [ ]' (1)

where LAPAL is the language of APAL. Unfortunately, (1) is circular: if we want
to use it to determine the value of ⇤', then we have to determine whether [ ]'
holds for all  2 LAPAL. So in particular, we have to determine whether [⇤']'
holds, which in turn requires us to determine whether ⇤' holds. But that’s
where we started out; if we want to find out whether ⇤' holds, we first have
to know whether ⇤' holds. In order to avoid this circularity, [4,5] define ⇤ not
by (1) but by

M, w |= ⇤', 8 2 LPAL : M, w |= [ ]' (2)

where LPAL is the set of formulas that do not themselves contain the operator
⇤. Since (2) is non-circular, it can be used as a definition of ⇤.

If we could have used (1) as definition of ⇤, then ⇤ would trivially have
satisfied (1). But we cannot. Still, not all hope is lost. Even though (1) is
not suitable as a definition of ⇤, it might be a property of ⇤ under another
definition. Unfortunately, as shown in [16], (2) is not such a definition: in
APAL, ⇤ does not satisfy (1).

Let us reflect briefly on what it means for ⇤ not to satisfy (1). The operator
⇤ is called an “arbitrary public announcement.” This name is justified by the
intuition that ⇤' is supposed to hold if and only if [ ]' holds for every public
announcement [ ]. So ⇤ is supposed to represent any announcement [ ]; an
arbitrary announcement indeed. But there are ' and  in APAL such that ⇤'
holds but [ ]' does not. In other words, ⇤ in APAL does not represent every
possible announcement [ ], so it is not a fully arbitrary public announcement.

In this paper, we introduce Fully Arbitrary Public Announcement Logic
(F-APAL). The idea behind F-APAL is that our ⇤ operator, unlike the APAL
one, will represent a fully arbitrary public announcement. More precisely, we
will define a logical language L that has ⇤ as an operator and semantics for L
such that

M, w |= ⇤', 8 2 L : M, w |= [ ]' (*)

is satisfied. The price we pay for this fully arbitrary announcement operator
⇤ is that our language L contains multiple auxiliary operators. If fact, we use
a proper class of indexed auxiliary operators: {⇤↵ | ↵ is an ordinal}.

The remainder of this paper is structured as follows. First, in Section 2, we
briefly discuss the problems with circularity, and show that the circularity in
(*) is vicious, so (*) cannot be used as a definition of ⇤. Then, in Section 3,
we introduce the language and semantics of our logic F-APAL. In Section 4,
we show that ⇤ satisfies (*) in F-APAL. In Section 5, we prove a few other
properties of F-APAL. Finally, in Section 6, we discuss the relation between
F-APAL and fixed points.
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2 Circularity
The easiest way to obtain semantics for ⇤ that satisfy (*), would be to use
(*) as a definition of ⇤. Certainly, (*) is circular, and circular definitions are
generally frowned upon. But not all circularity is vicious, and non-viciously
circular properties can be used as definitions. For example, many fixed points
can be given a circular definition. The question, then, is whether the circularity
in (*) is vicious.

We are working in a two-valued modal logic. So a property can be used as
a definition for an operator X of arity n if and only if, for each pointed model
M, w and each tuple '1, · · · ,'n, exactly one of M, w |= X('1, · · · ,'n) and
M, w 6|= X('1, · · · ,'n) satisfies the property. There are two ways in which
a property can fail to be suitable as a definition. Firstly, the property can
be inconsistent, and allow neither truth value for a sentence in some pointed
model. A typical example of an inconsistent property is the (modal) liar: 2

“This sentence is false (in this pointed model).” (3)

If we suppose that (3) is true, then the claim made in (3) is is true, so (3) is
false. In two-valued logic this is a contradiction, so (3) cannot be true. If, on
the other hand, we suppose that (3) is false, then the claim made in (3) is false,
so (3) is not false. This too is a contradiction, so (3) cannot be false either. It
follows that (3) allows neither truth value, so it is inconsistent.

Secondly, a property can be underdetermined, and allow both truth values
for a sentence in some pointed model. A typical example of an underdetermined
sentence is the (modal) truth teller:

“This sentence is true (in this pointed model).” (4)

If we suppose that (4) is true, then the claim made in (4) is true, so (4) is
true. This does not lead to a contradiction, so we can consistently say that
(4) is true. If, on the other hand, we suppose that (4) is false, then the claim
made in (4) is false, so (4) is not true and therefore false. Again, we do not
arrive at a contradiction, so we can consistently say that (4) is false. We are
working in a two-valued logic, so we cannot assign (4) both truth values at the
same time. We are, however, free to choose either of the truth values. So (4)
is underdetermined.

If a circular property is inconsistent or underdetermined, then the circularity
is vicious. But that does not mean that the two kinds of vicious circularity are
equally bad. In both cases, we cannot use the circular property as a definition.
But with an underdetermined property we can try to find a di↵erent definition
that satisfies the property, whereas with an inconsistent property we have no
choice but to give up.

Sadly, the circularity in (*) turns out to be vicious. Fortunately, however,
it exhibits the less problematic kind of viciousness: (*) is underdetermined but

2 Note that, in the terminology used above, the liar sentence is a nullary operator.
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Fig. 1. The S5 model MUn . Reflexive arrows are not drawn, for reasons of clarity.

consistent. So while we cannot use (*) as a definition of ⇤, we may be able
to find semantics for ⇤ that satisfy (*). We prove the consistency of (*) in
Sections 3 and 4, by constructing semantics that satisfy it. In this section, we
show that (*) is underdetermined.

A slight complication is that whether (*) is underdetermined may depend
on the other connectives that are present in the language. We have not defined
the language L yet, so we will use a smaller language in this section. We
assume that our language uses only propositional atoms and the connectives
¬,_,Ka, [ ] and ⇤. All except ⇤ are given the usual semantics, 3 we make no
assumptions about the semantics of ⇤. Additionally, for ease of notation, we
use ^, K̂a, h i and ⌃ as duals of _,Ka, [ ] and ⇤, respectively.

In this section we do not consider the auxiliary operators ⇤↵. This is only
for reasons of clarity of presentation, however. If we added the ⇤↵ operators
(with the semantics as given in Section 3), then the proofs given in this section
would still work with only very minor modifications.

Consider the S5 modelMUn shown in Figure 1 and let ⇠ := K̂ap^K̂bKa¬p^
K̂cKa¬p. So ⇠ holds if and only if (1) there is an a-accessible p world, (2) there
is a b-accessible world where there is no a-accessible p world and (3) there is a
c-accessible world where there is no a-accessible p world. Regardless of which
worlds of MUn we retain or eliminate, the only world in which ⇠ can possibly
hold is w2. And for ⇠ to hold in w2 it must be the case that exactly w1, w2, w3

and u2 are retained while u1 and u3 are eliminated.
In the next two lemmas, we show that MUn , w2 6|= ⌃⇠ and MUn , w2 |=

⌃⇠ are both consistent with (*). In order to do this, we use the following
observation. By the definition of public announcements, we have M, w |= [ ]'
if and only if M, w |=  and M , w |= ', where M is the restriction of M to
those worlds satisfy  . This implies that, for every  1, 2 that have the same
extension, M, w |= [ 1]' if and only if M, w |= [ 2]'. Now, consider the right
hand side of (*): 8 2 L : M, w |= [ ]'. Because it is only the extension of  
that matters, that is equivalent to

8x 2 {J KM |  2 L} : Mx, w |= ',

where Mx is the restriction of M to x and, by convention, Mx, w |= ' for

3 We assume that the reader is familiar with the standard semantics for these operators. If
not, see Section 3.
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every ' if w 62 x. 4 So (*) is equivalent to

M, w |= ⇤', 8x 2 {J KM |  2 L} : Mx, w |= '. (**)

In the following two lemmas, we start by defining a set X. We then define the
semantics for ⇤ by

M, w |= ⇤', 8x 2 X : Mx, w |= '. (5)

We then show that, under these semantics, X is exactly the set of extensions
on M, so X = {J KM |  2 L}. It follows immediately that (**) is satisfied,
and therefore (*) is satisfied as well.

Lemma 2.1 There is a valuation for ⌃⇠ that is consistent with (*) such that
MUn , w2 6|= ⌃⇠.
Proof. Take X = {?, {w1, w2, w3}, {u1, u2, u3}, {w1, w2, w3, u1, u2, u3}}, and
define ⇤ by (5). We show that X is exactly the set of extension on MUn . First,
note that for every x 2 X there is a formula  such that x = J K: we have ? =
Jp ^ ¬pK, {w1, w2, w3} = J¬pK, {u1, u2, u3} = JpK and {w1, w2, w3, u1, u2, u3} =
Jp _ ¬pK.

Left to show is that for every formula  , there is some x 2 X such that
x = J K. So we need to show that  cannot distinguish between the three
columns of the model, i.e. there is no formula that can distinguish between
w1, w2 and w3 or between u1, u2 and u3. We do this by induction. First, as
base case, note that there is no atomic formula that can distinguish between
the three columns. Then, assume as induction hypothesis that  is not atomic
and that no strict subformula of  can distinguish between the columns. We
continue by case distinction on the main connective of  .

• Suppose the main connective of  is not ⇤. Then  can only distinguish
between the columns if at least one of its strict subformulas can. By the
induction hypothesis this is not the case.

• Suppose  = ⇤ 0. Then  can distinguish between two columns only if  0

distinguishes between the columns in (MUn)x for some x 2 X. For x = ?
this is trivially not the case, by convention we have (MUn)?, v |=  for every
world v, since v 62 ?.
For x = {w1, w2, w3} and x = {u1, u2, u3} we have that all worlds in the

resulting model (MUn)x agree on all propositional variables. So no formula
using atoms, ¬,_ and Ka can distinguish between any two worlds. Further-
more, this property is retained in submodels of (MUn)x, so the operators [�]
and ⇤ cannot help distinguish between any worlds either. In particular,  0

cannot distinguish between the columns.
Finally, for x = {w1, w2, w3, u1, u2, u3} we have (MUn)x = MUn . So by

the induction hypothesis  0 cannot distinguish between the columns.

4 This convention corresponds to the convention in public announcement logic that M, w |=
[ ]' for all ' if M, w 6|=  .
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For every x 2 X, we have seen that  0 cannot distinguish between the
columns of (MUn)x. So  = ⇤ 0 cannot distinguish between the columns
of MUn .

So in both cases  cannot distinguish between the columns of the model. This
completes the induction step, thereby showing that for every  there is an
x 2 X such that J K = x. It follows that X is indeed the set of extensions on
MUn , so (*) is satisfied.

Furthermore, we have MUn , w2 |= ⌃⇠ if and only if {w1, w2, w3, u2} 2 X.
This is not the case, so MUn , w2 6|= ⌃⇠ is consistent with (*).

2

Lemma 2.2 There is a valuation for ⌃⇠ that is consistent with (*) such that
MUn , w2 |= ⌃⇠.
Proof. Take X = 2{w1,w2,w2,u1,u2,u3}, and define ⇤ by (5). We show that X
is the set of extensions on MUn . First, note that for every  we trivially have
J K 2 X. Left to show is that for every x 2 X there is some formula  such
that x = J K.

We have MUn , w2 |= ⌃⇠, since {w1, w2, w3, u2} 2 X. As discussed above,
w2 is also the only world where ⌃⇠ holds. But then every world v ofMUn can be
uniquely identified by some formula �v. Specifically, we have �w1 = ¬⌃⇠^K̂b⌃⇠,
�w2 = ⌃⇠, �w3 = ¬⌃⇠^K̂c⌃⇠ and �ui

= p^K̂a�wi
for i 2 {1, 2, 3}. Every x 2 X

is then the extension of the appropriate disjunction of such �v. So X is indeed
the set of extensions, which implies that MUn , w2 |= ⌃⇠ is consistent with
(*). 2

Corollary 2.3 The characterization (*) is underdetermined.

We should note that, although MUn , w2 6|= ⌃⇠ and MUn , w2 |= ⌃⇠ are both
consistent with (*), this does not mean that we consider both to be equally
good solutions. The worlds w1, w2 and w3 in MUn are bisimilar to each other.
In a well behaved modal logic we would therefore expect them to satisfy the
same formulas. If we take MUn , w2 6|= ⌃⇠ then they do indeed satisfy the same
formulas. But if we take MUn , w2 |= ⌃⇠ then ⌃⇠ distinguishes between w2 on
the one hand and w1 and w3 on the other. There seems to be no compelling
reason to allow the ⌃ operator to break bisimilarity, so we preferMUn , w2 6|= ⌃⇠
over MUn , w2 |= ⌃⇠. Fortunately, it will turn out that in our semantics for
F-APAL we have MUn , w2 6|= ⌃⇠.

3 Language and Semantics
In the previous section we showed that (*) is underdetermined, and therefore
not suitable as a definition. If we want ⇤ to satisfy (*), we will have to find
deterministic semantics for ⇤ that satisfy (*). In this section we introduce
such semantics, in the next section we prove that the semantics satisfy (*).
Our logic F-APAL uses ordinals, so before defining the language and semantics
of F-APAL we give a brief reminder of the properties of ordinals that we need.
A more thorough introduction to ordinals can be found in most textbooks
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about set theory, see for example [15]. 5 The following two definitions are as
usual.

Definition 3.1 A set x is transitive if for all y 2 x and z 2 y we have z 2 x.

Definition 3.2 A set ↵ is an ordinal number if ↵ is transitive and, for all
� 2 ↵, � is a transitive set. The class {↵ | ↵ is an ordinal number} of all
ordinal numbers is denoted Ord.

If ↵ and � are ordinals numbers, we write ↵ < � if ↵ 2 � and ↵  � if
↵ < � or ↵ = �. Furthermore, we write ↵+ 1 for the set {↵} [ ↵.

We often omit the word “number” and speak simply of an ordinal ↵. We
also follow the usual convention of using the natural numbers to denote the
finite ordinals; 0 represents ?, 1 represents ?+ 1 = {?}, and so on.

We will use a few relatively well known properties of ordinal numbers that
we state here without proof.

Lemma 3.3 The following properties hold.

• Ord is not a set, it is a proper class,

• for any ↵,� 2 Ord, either ↵  � or �  ↵,

• for any set X of ordinals, the set sup(X) :=
S

↵2X ↵ is an ordinal, and
↵  sup(X) for all ↵ 2 X,

• for any class X of ordinals, there is an ordinal min(X) 2 X such that
min(X)  ↵ for all ↵ 2 X.

This finishes our very brief discussion of ordinals. Let us continue by defin-
ing our language L.
Definition 3.4 Let a countable set P of propositional variables and a finite set
A of agents be given. The language L(P,A) is given by the following normal
form:

' ::= p | ¬' | ' _ ' | Ka' | [']' | ⇤↵' | ⇤'
where p 2 P, a 2 A and ↵ 2 Ord.

For ↵ 2 Ord, the sub-language L↵(P,A) is the class of formulas that contain
neither ⇤ nor ⇤� with � � ↵.

We write L and L↵ for L(P,A) and L↵(P,A) respectively where this should
not cause confusion. Furthermore, we use ^, K̂a, h'i,⌃↵ and ⌃ in the usual way
as abbreviations.

Note that L is a proper class. It is unusual for a logic to have a proper
class of formulas, and it has certain consequences that F-APAL does. For
example, the validities of F-APAL are trivially not recursively enumerable—or
enumerable at all. For the results presented in this paper, however, the fact
that L is a proper class does not give any trouble. With the exception of the
proofs that depend on L being a proper class, all proofs proceed in the same
way as they would have if L had been a set.

5 Alternatively, see [7] for an introduction to ordinals and circularity.
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We evaluate our language on S5-models. The choice of this class of models
is more for historical reasons than practical ones: the original APAL papers
[4,5] use S5 models and we follow their example, but very few of the proofs in
this paper depend on the fact that we are working in S5.

Definition 3.5 A model M is a triple M = (W,R, V ) where W is a set of
worlds, R : A ! }(W ⇥ W ) assigns to each agent an equivalence relation on
W and V : P ! }W . A pointed model is a pair M, w where M = (W,R, V )
is a model and w 2 W . We write Ra(w) for {w0 | (w,w0) 2 R(a)}.

The semantics for F-APAL are as follows.

Definition 3.6 The satisfaction relation |= is given recursively by

M, w |= p , w 2 V (p),
M, w |= ¬' , M, w 6|= ',
M, w |= '1 _ '2 , M, w |= '1 or M, w |= '2,
M, w |= Ka' , M, w0 |= ' for all w0 2 Ra(w),
M, w |= ['1]'2 , M, w 6|= '1 or M'1 , w |= '2,
M, w |= ⇤↵' , M, w |= [ ]' for all  2 L↵,
M, w |= ⇤' , M, w |= ⇤↵' for all ↵ 2 Ord.

Where M' is given by M' = (W', R', V'), W' = {w 2 W | M, w |= '},
R'(a) = R(a) \ (W' ⇥W') and V'(p) = V (p) \W'.

We write M |= ' if M, w |= ' for every world w of M, and |= ' if M |= '
for every model M.

Note that L0 is the language without any ⇤↵ or ⇤ operators, so L0 = LPAL.
The operator ⇤0 quantifies over all announcements from L0 = LPAL, so ⇤0 has
the same semantics as the APAL operator from the original APAL papers [4,5].
Thus, APAL is embedded in F-APAL as the fragment L1.

4 Fully Arbitrary Public Announcements
In this section we show that ⇤, as defined above, is a fully arbitrary public
announcement. So we show that ⇤ satisfies (*). Before we can do so, however,
we need a few auxiliary definitions and one lemma.

Definition 4.1 Let ' 2 L and � 2 Ord. Then #�(') 2 L�+1 is the formula
obtained by replacing all occurrences of ⇤ and ⇤↵ where ↵ > � by ⇤� .
Definition 4.2 Let M = (W,R, V ) be a model, ' 2 L and let ↵ be an ordinal.
We say that ↵ approximates Ord for ' on M if for every submodel M0 =
(W 0, R0, V 0) of M, every w 2 W 0, every subformula  of ' and every � � ↵
we have

M0, w |=  , M0, w |= #�( ).

We write Approx(M,') for the class of ordinals that approximate Ord on M
for '.

Lemma 4.3 (Approximation Lemma) For every model M = (W,R, V )
and every ' 2 L, the class Approx(M,') is non-empty.
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Proof. By induction on the construction of '. If ' is atomic then it does
not contain any boxes, so the lemma is trivial. Suppose therefore as induction
hypothesis that ' is not atomic and that the lemma holds for all strict subfor-
mulas of '. Since, by assumption, Approx(M, ) is nonempty for every strict
subformula  of ', let ↵ 2 Approx(M, ).

As usual, we continue by a case distinction on the main connective of '.
Most of the cases are quite trivial, so we do not give their proofs in much detail.

• Suppose ' = ¬ . Then ↵ 2 Approx(M,').

• Suppose ' =  1 _  2. Then max(↵ 1 ,↵ 2) 2 Approx(M,').

• Suppose ' = Ka . Then ↵ 2 Approx(M,'), since ↵ approximates Ord
on every world of M.

• Suppose ' = [ 1] 2. Let ↵ = max(↵ 1 ,↵ 2). Then, for every � � ↵,
M 1 = M#�( 1). Furthermore, ↵ 2 approximates Ord not just on M but
also on all of its submodels, so  2 is equivalent to #�( 2) on the updated
model. Clearly, #�([ 1] 2) = [#�( 1)]#�( 2), so it follows that #�([ 1] 2) is
equivalent to [ 1] 2 on M. So ↵ 2 Approx(M,').

• Suppose ' = ⇤� . Then max(�,↵ ) 2 Approx(M,').

• Suppose ' = ⇤ . Let M be the set of pointed models M0, w such that
M0 is a submodel of M. We can partition M into M+ := {M0, w 2
M | M0, w |= ⇤↵ for all ordinals ↵} and M� := {M0, w 2 M | M0, w 6|=
⇤↵ for some ordinal ↵}.

For M0, w 2 M, let ↵M0,w be given by

↵M0,w :=

⇢

0 if M0, w 2 M+

min{↵ | M0, w 6|= ⇤↵ 0} if M0, w 2 M�

For every � � ↵M0,w we have M0, w |= ⇤ , M0, w |= ⇤� .
Now, let ↵M := sup{↵M0,w | M0, w 2 M}. This supremum exists and

is itself an ordinal, because M is a set. Take ↵ = max(↵M,↵ ). For every
M0, w and every � � ↵ we have M0, w |= ⇤ , M0, w |= ⇤� since � � ↵M

and therefore � � ↵M0,w. Furthermore, M0, w |= ⇤� , M0, w |= #�(⇤� )
since � � ↵ (and � � �, so #�(⇤� ) = ⇤�#�( )). It follows that M0, w |=
⇤ , M0, w |= #�(⇤ ). This holds for every M0, w and every � � ↵, so
↵ 2 Approx(M,').

2

Remark 4.4 Alternatively, we could have proven the Approximation Lemma
by using the pigeonhole principle: a model M = (W,R, V ) has at most |2W |
di↵erent extensions, so for any ↵ with |↵| > |2W | and any ' we have M |= '$
#↵('). This alternative proof is more complicated than the one given above,
however, which is why we gave this one.

Theorem 4.5 For every pointed model M, w and every ' 2 L, we have
M, w |= ⇤', 8 2 L : M, w |= [ ]'.

Proof. First, suppose 8 2 L : M, w |= [ ]'. Then, in particular, for every
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ordinal ↵ we have 8 2 L↵ : M, w |= [ ]' and therefore, by the semantics of
⇤↵, M, w |= ⇤↵'. Since this holds for every ordinal ↵, we have M, w |= ⇤↵.

We continue the proof by contraposition, so suppose there is some  2 L
such that M, w 6|= [ ]'. By the Approximation Lemma, there is an ordinal
↵ such that  is equivalent to #↵( ) on all submodels of M. In particular,  
and #↵( ) are equivalent on M. This implies that M, w 6|= [#↵( )]'. We have
#↵( ) 2 L↵+1, so M, w 6|= ⇤↵+1'. That, finally, implies M, w 6|= ⇤'. 2

5 Properties of F-APAL
Here we briefly discuss a few properties of F-APAL. None of these properties
are particularly surprising, this section could be seen as a “sanity check” for
⇤, showing that it has about the properties one would expect.

Proposition 5.1 F-APAL is invariant under bisimulation.

Proof. First, we show that L↵ is invariant under bisimulation for all ↵ 2 Ord.
We do this by induction on ↵. As base case, suppose ↵ = 0. Then L↵ is
public announcement logic, which is known to be invariant under bisimulation.
Suppose then as induction hypothesis that L� is invariant under bisimulation
for all � < ↵.

Now, take any ' 2 L↵. We show that ' is invariant under bisimulation by a
secondary induction on the construction of '. If ' is atomic, then it is trivially
invariant under bisimulation. Suppose as secondary induction hypothesis that
all strict subformulas of ' are invariant under bisimulation. Take any two
pointed models M1, w1 and M2, w2 that are bisimilar. We proceed by case
distinction on the main connective of ', but most of the cases are trivial so
we omit them. The one case that we do consider in detail is ' = ⇤� . Since
' 2 L↵, we have � < ↵. By the primary induction hypothesis, this implies
that, for every � 2 L� , we have that � is invariant under bisimulation. As
a result, for every such �, the pointed models (M1)�, w1 and (M2)�, w2 are
bisimilar (if they exist). By the secondary induction hypothesis, this implies
that  cannot distinguish between (M1)�, w1 and (M2)�, w2. It follows that
⇤� cannot distinguish between M1, w1 and M2, w2. this holds for any two
bisimilar pointed models, so ' is invariant under bisimulation. This completes
the induction step of the secondary and primary inductions, so L↵ is invariant
under bisimulation for all ↵ 2 Ord.

Left to show is that L is invariant under bisimulation. Take any ' 2 L. Once
again, we use induction on the construction of ' to show that it is invariant
under bisimulation. As base case, suppose ' is atomic. Then it is trivially
invariant under bisimulation. Suppose therefore as induction hypothesis that
all strict subformulas of ' are invariant under bisimulation. We proceed by a
case distinction on the main connective of '. Most cases are trivial, so we omit
them. The cases that we do consider are ' = ⇤↵ and ' = ⇤ .

Suppose ' = ⇤↵ . Then we reason as before: the formulas that ⇤↵ quan-
tifies over are invariant under bisimulation, as is  . It follows that ⇤↵ is also
invariant under bisimulation.
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Suppose ' = ⇤ . As shown in the previous case, ⇤↵ is invariant under
bisimulation for all ↵ 2 Ord. By definition, ⇤ holds if and only if ⇤↵ holds
for all ↵ 2 Ord. So ⇤ is also invariant under bisimulation. This completes
the induction step and thereby the proof. 2

Recall that in Section 2 we showed that (*) is under-determined by showing
that in the model MUn , see Figure 1, we can assign two di↵erent valuations for
⌃⇠ that are both consistent with (*). In one of these valuations, ⌃⇠ is false in
the world w2. In the other valuation, ⌃⇠ is true in w2 because it is self-fulfilling.

By defining our semantics for F-APAL, we made a choice between these
two valuations. It follows easily from the fact that F-APAL is invariant under
bisimulation that we have chosen the valuation MUn , w2 6|= ⌃⇠. As discussed
in Section 2, we prefer MUn , w2 6|= ⌃⇠ over MUn , w2 |= ⌃⇠. So we are satisfied
that F-APAL makes ⌃⇠ false in MUn , w2.

Proposition 5.2 Let ','0 2 L and ↵ 2 Ord. Then

(i) if |= ', then |= ⇤' and |= ⇤↵',
(ii) |= ⇤('! '0) ! (⇤'! ⇤'0) and |= ⇤↵('! '0) ! (⇤↵'! ⇤↵'0),

(iii) |= ⇤'! ' and |= ⇤↵'! ',

(iv) |= '! ⌃' and |= '! ⌃↵',
(v) |= ⇤'$ ⇤⇤' and |= ⇤↵'$ ⇤↵⇤↵'.
Proof. Let M = (W,R, V ) be any model and let w 2 W .

• Suppose |= '. Then, in particular, for every  such that M, w |=  , we have
M , w |= ' and therefore M, w |= [ ]'. For every  such that M, w 6|=  we
trivially have M, w |= [ ]'. So for all  , we have M, w |= [ ]'. This implies
that M, w |= ⇤', and therefore also the weaker statement M, w |= ⇤↵'.

• IfM, w |= ⇤('! '0) andM, w |= ⇤', then for every  such thatM, w |=  
we have M , w |= ' ! '0 and M , w |= ' and therefore M , w |= '0. It
follows that M, w |= [ ]'0 and therefore |= ⇤('! '0) ! (⇤'! ⇤'0).

The same holds if we restrict to  2 L↵ instead of all  , so |= ⇤↵(' !
'0) ! (⇤↵'! ⇤↵'0).

• If M, w |= ⇤' or M, w |= ⇤↵' then, in particular, M, w |= [>]' and
therefore M, w |= '.

• If M, w |= ' then M, w |= h>i' and therefore M, w |= ⌃' and M, w |=
⌃↵'.

• Suppose M, w |= ⇤'. Then, in particular, for every  1, 2 we have M, w |=
[ 1^ [ 1] 2]'. That is equivalent to M, w |= [ 1][ 2]'. This holds for every
 1, 2, so M, w |= ⇤⇤'.

Similarly, if M, w |= ⇤↵' then M, w |= [ 1 ^ [ 1] 2]' for all  1, 2 2 L↵.
It follows that M, w |= [ 1][ 2]' for all  1, 2 2 L↵, so M, w |= ⇤↵⇤↵'.

The other side of the bi-implications follows from |= ⇤' ! ' and |=
⇤↵'! '.

2
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In particular, this shows that ⇤ and ⇤↵ are S4 operators.
Before proving the next proposition, we need an auxiliary lemma. This

lemma and the next proposition are the only places in this paper where we use
the fact that we use the class S5 of models, all other results apply to K as well.
The lemma uses a technique very similar to the one used in [10] to show that
every formula is “whether-knowable,” i.e. for every formula ', every agent a
and pointed model M, w there is a formula  such that either M, w |= [ ]Ka'
or M, w |= [ ]Ka¬'.
Lemma 5.3 Let ' 2 L, and let P be the propositional variables that occur in
'. There is a function f : 2P ! {>,?} such that for every model M and
every P 0 ✓ P : if M |= p for all p 2 P 0 and M |= ¬p for all p 2 P \ P 0, then
M |= ' if M |= f(P 0) and M |= ¬' if M |= ¬f(P 0).

Proof. By induction on the construction of '. As base case, suppose ' is
atomic. Then ' = p for some p 2 P . The function given by f(?) = ? and
f({p}) = > then satisfies the lemma. Suppose then as induction hypothesis
that ' is not atomic and that the lemma holds for all strict subformulas of '.
Given such a strict subformula  , let f be the function associated with  .
The proof continues by a case distinction on the main connective of '.

• Suppose ' = ¬ . Then the function given by f(P 0) = ¬f (P 0) satisfies the
lemma.

• Suppose ' =  1 _ 2. Then the function f(P 0) = f 1(P
0)_ f 2(P

0) satisfies
the lemma.

• Suppose ' = Ka . For every �, we have M |= � ) M |= Ka�. Further-
more, since we are working in S5, we have M |= ¬� ! M |= ¬Ka�. As a
result, the function f = f satisfies the lemma.

• Suppose ' = [ 1] 2. Let f be given by f(P 0) = f 1(P
0) ! f 2(P

0). Let M
be any model such that M |= p for all p 2 P 0 and M |= ¬p for all p 2 P \P 0.
If f 1(P

0) = ? then M |= ¬ 1, so trivially M |= [ 1] 2. Note that in this
case f(P 0) = >, so the lemma is satisfied. If f 1(P

0) = >, then M 1 = M,
so ' is equivalent to  2 on M. Note that f(P 0) = f 2(P

0) in this case, so
the lemma is satisfied.

• Suppose ' = ⇤↵ or ' = ⇤'. For every updated model M� and every
p 2 P , we have M |= p ) M� |= p and M |= ¬p ) M� |= ¬p. So if we
take f = f , then the lemma is satisfied.

2

Proposition 5.4 Let ' 2 L and ↵ 2 Ord. Then

(i) |= ⇤⌃'! ⌃⇤' and |= ⇤↵⌃↵'! ⌃↵⇤↵',
(ii) |= ⌃⇤'! ⇤⌃' and |= ⌃↵⇤↵'! ⇤↵⌃↵'.
Proof. Let a pointed model M, w be given. Let P = {p1, · · · , pn} be the set
of propositional variables that occur in '. Furthermore, let P 0 = {p 2 P |
M, w |= p} and let ⇣ =

V

p2P 0 p ^
V

p2P\P 0 ¬p. Finally, let f' : 2P ! {>,?}
be the function from Lemma 5.3.
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Now, consider the models M⇣ . For every p 2 P 0 we have M⇣ |= p and for
every p 2 P \P 0 we have M⇣ |= ¬p. The same holds for every submodel of M⇣ .
Lemma 5.3 therefore implies that, for all submodels M1,M2,M3,M4 of M⇣ ,
we have M1, w |= ', M2, w |= ⌃', M3, w |= ⇤', M4, w |= f'(P 0).

Suppose now that M, w |= ⇤⌃'. Then, in particular, M, w |= [⇣]⌃'.
It follows that M⇣ , w |= ⌃' and therefore M⇣ |= ⇤'. As such, we have
M, w |= h⇣i⇤' and therefore M, w |= ⌃⇤'.

Suppose then that M, w |= ⌃⇤'. Then there is some  such that M , w |=
⇤'. In particular, M , w |= [⇣]', so (M )⇣ , w |= '. But (M )⇣ is a submodel
of M⇣ , so we have M0, w |= ' for every submodel of M⇣ (that includes w).
For every  , (M )⇣ is a submodel of M⇣ , so (M )⇣ , w |= '. It follows that,
for every  , M, w |= [ ]h⇣i' and therefore M, w |= ⇤⌃'.

Finally, since ⇣ 2 L0, the same reasoning holds for ⇤↵ and ⌃↵ instead of ⇤
and ⌃, so |= ⇤↵⌃↵'! ⌃↵⇤↵' and |= ⌃↵⇤↵'! ⇤↵⌃↵'. 2

Proposition 5.4.(i) is known as the Church-Rosser schema and characterizes
the property known as convergence or confluence. In our terms: if in a given
model M, w you make two di↵erent (truthful) announcements ' and  , you
get two typically di↵erent (non-bisimilar) model restrictionsM', w andM , w.
Proposition 5.4.(i) then says that in such a case there are announcements '0

and  0 such that (M')'0 , w is bisimilar to (M ) 0 , w.
Proposition 5.4.(ii) is also known as the McKinsey schema. In the presence

of the schema ⇤' ! ⇤⇤' (which is valid in F-APAL, see Proposition 5.2)
this characterizes so-called atomicity. Intuitively, given any model M, w and
any set P of propositional variables, there is a ⇣ such that on M⇣ , w we have
'$ ⇤' for all ' that contain only propositional variables from P . So inM⇣ , w
you already know all there is to know about P , any further model restriction is
uninformative. Even more intuitively, Proposition 5.4.(ii) says that given any
model M, w and any formula ', you can make a most informative announce-
ment with respect to the propositional variables occurring in '; namely the ⇣
above.

For a more detailed description of these properties, see [8].

6 F-APAL and fixed points

The semantics of ⇤ are reminiscent of fixed point constructions. Indeed, we can
define ⇤ as a fixed point. The relation between F-APAL and fixed points is not
straightforward, however. There are also several open questions regarding the
fixed points related to F-APAL. Let us therefore discuss the relation between F-
APAL and fixed points in detail. The auxiliary operators ⇤↵ are not important
to the fixed point behavior of ⇤, so in this section we work with a language L0

that includes ¬,_,Ka, [ ] and ⇤ but not ⇤↵.
Let us start by recalling the definitions of (*), (**) and (5) (with L0 substi-

tuted for L):

M, w |= ⇤', 8 2 L0 : M, w |= [ ]' (*0)
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M, w |= ⇤', 8x 2 {J KM |  2 L0} : Mx, w |= '. (**0)

M, w |= ⇤', 8x 2 X : Mx, w |= '. (5)

Also, recall that (*0) and (**0) are equivalent. Now, let M = (W,R, V ) and
suppose that we would define ⇤ not as in Definition 3.6 but by (5) for some
X ✓ 2W . This alternative definition only applies to the specific model M, so
we will assume that ⇤ is defined in some way on other models.

Because we define ⇤ by (5), we have (**0) and (*0) if X is the set of ex-
tensions on M. (See Section 2 for a discussion of why this is so.) In order to
emphasize that our semantics, and therefore our set of extensions, depend on
X let us write JL0KXM for the set of all extensions on M. So (*0) is satisfied if

X = JL0KXM.

In other words, (*0) is satisfied if X is a fixed point of f : X 7! JL0KXM.
Unfortunately, f is not monotone, 6 nor do we have X ✓ f(X). The standard
methods for proving the existence of a fixed point therefore do not apply;
whether f has a fixed point (on every model) is, to the best of our knowledge,
an open question.

Alternatively, we can consider the function g : X 7! X [ JL0KXM. This
function is also not monotone, but it does by construction satisfy X ✓ g(X).
As a result, g is guaranteed to have a fixed point. For example, 2W is a fixed
point of g. More importantly, {J KM |  2 L} is a fixed point of g. In fact,
{J KM |  2 L} = lim↵2Ord g↵(?). 7

The construction of {J KM |  2 L} is therefore an instance of a general
kind of fixed point construction: let S be any complete lattice, and let h : S ! S
be any function that satisfies s  h(s) for all s 2 S. Then lim↵2Ord h↵(0) is
guaranteed to exist and be a fixed point of h, where 0 is the least element of S
and h↵(0) is defined as sup�<↵ h

�(?) when ↵ is a limit ordinal.
However, unless h is monotone, it is not guaranteed that lim↵2Ord h↵(0)

is the least fixed point of h. As such, we cannot immediately conclude that
{J KM |  2 L} is the least fixed point of g. Whether it is in fact the least
fixed point is an open question.

The fact that {J KM |  2 L} = lim↵2Ord g↵(?) shows that we could have
defined the semantics of ⇤ using a fixed point, instead of using M, w |= ⇤',
M, w |= ⇤↵' for all ↵ 2 Ord. It should be noted, however, that although the
auxiliary operators ⇤↵ do not occur in the fixed point definition of ⇤, we do
still need them in order to satisfy (*).

As noted before, any fixed point of f satisfies (*0). So it can be used to
define a fully public arbitrary announcement for the language L0, the language

6 i.e. it is not the case that, for all X,Y , if X ✓ Y then f(X) ✓ F (Y ).
7 Where g↵(?) is defined as

S
�<↵ g�(?) if ↵ is a limit ordinal, and we use the discrete

topology (i.e. lim↵2Ord Z↵ = l , 9�8↵ > � : Z↵ = l).
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without auxiliary operators. A fixed point of g is not guaranteed to share this
property, however. If X is a fixed point of g, then we have X = X [ JL0KXM.
But then there might be x 2 X \ JL0KXM, i.e. there might be some sets that are
quantified over by ⇤ that are not the extension of any formula.

For the specific fixed point lim↵2Ord f↵(?) of g, we can solve this problem
using the auxiliary operators. While some elements of lim↵2Ord f↵(?) are not
the extension of any formula of L0, each of them is the extension of some formula
of L.

We hope that this section has clarified the relation between F-APAL and
fixed points. In particular, we hope that it explains why we define the semantics
of F-APAL the way we do, instead of as a fixed point.

7 Conclusion
We introduced a logic F-APAL, in which the connective ⇤ represents a fully
arbitrary public announcement, i.e. we have

M, w |= ⇤', 8 2 L : M, w, |= [ ]'

for all ' 2 L and every pointed model M, w. The price we pay for this property
is that we use a proper class of auxiliary operators, {⇤↵ | ↵ 2 Ord}.

This suggests a few directions for further research. Firstly, we could try to
use similar techniques to design semantics for other circular properties. Ex-
amples of such circular properties include “agent a knows at least as much as
agent b”

M, w |= a ⌫ b , 8 : M, w |= Kb ! Ka 

and “everything agent a believes is true” 8

M, w |= T (a) , 8 : M, w |= Ka !  .

Or consider knowledge based programs [12,13] (or similarly: epistemic proto-
cols [2,3]). Such programs contain instructions for multiple agents to perform
actions. But, importantly, every action has to come with an epistemic precon-
dition for the agent that is supposed to carry out the action. So a knowledge
based program can only contain clauses of the form “if Ka', then a should do
x.” These kinds of programs are useful when modeling distributed systems.
Suppose we use ⌅ to denote “there is a knowledge based program ⇡ that, if
executed, guarantees outcome  .” Then ⌅ is circular, since ⇡ could contain
a clause “if Ka⌅ , then a should do x.”

Secondly, we could attempt to reduce the conceptual cost of F-APAL by
using fewer auxiliary operators. Ideally we would use no auxiliary operators
at all, but barring that it would be nice to have a set of auxiliary operators
instead of a proper class. We conjecture that it is possible to have fully arbitrary
public announcements with a set of auxiliary operators, but we think it may be

8 If we work in S5, Ka !  is always true for every  . So in order to make this property
interesting we would need to use a di↵erent class of models.
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impossible to have fully arbitrary public announcements without any auxiliary
operators.
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