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Abstract

We consider probabilistic modal logic, graded modal logic and stochastic modal logic, where linear
inequalities may be used to express numerical constraints between quantities. For each of the logics, we
construct a cut-free sequent calculus and show soundness with respect to a natural class of models. The
completeness of the associated sequent calculi is then established with the help of coalgebraic semantics
which gives completeness over a (typically much smaller) class of models. With respect to either
semantics, it follows that the satisfiability problem of each of these logics is decidable in polynomial
space.
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1 Introduction

In this paper, we consider three different, but closely related, modal logics. The first
logic that we consider is probabilistic modal logic, where we think of every formula A as
denoting an event JAK in a probability space. The variant of probabilistic modal logic
that we consider here allows explicit comparisons of the likelihoods of individual formulas
by means of linear inequalities. If A1, . . . , Am are formulas and p, c1, . . . , cm ∈ Q, then
the expression

∑m
j=1 cj · µ(JAjK) ≥ p can be denoted a formula which is satisfied at a

point x of a probability space if the local probability measure µ associated with point x
satisfies the above inequality. An expression of this form is written as an m-ary modal
operator, Lp(c1, . . . , cm), applied to A1, . . . , Am.

The second logic that we consider is graded modal logic, where we may again use
linear inequalities to express constraints on successors with certain properties. As before,
we use m-ary modal operators of the form Lp(c1, . . . , cm) to express that the inequality∑m
j=1 cj ·]Aj ≥ p holds at a particular point in a Kripke model, where ]Aj is the number

of successors of that state satisfying property Aj .
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Finally, we consider a third logic, stochastic modal logic, that is a hybrid between
the two. To get from probabilistic modal logic to stochastic modal logic, one needs to
generalise from probability measures to arbitrary measures. To get to stochastic logic
from graded modal logic, one gives up the idea of always having an integer number of
successors and replaces the transition relation by a family of local real-valued measures
that determine the total weight of a successor set.

For each of the logics mentioned above, we give an axiomatisation in terms of a
cut-free sequent calculus and prove soundness with respect to a natural class of mod-
els: Markov models, Kripke models and what we call measurable models – the natural
generalization of Markov models, where one drops the requirement of dealing with prob-
ability measures. We then establish completeness of the sequent calculus with respect
to coalgebraic models. For each of the logics, we isolate a natural, coalgebraic seman-
tics and show how the general results of coalgebraic modal logics can be used to give
a rather simple completeness proof. In a third step, we relate both types of semantics,
and show that the coalgebraic semantics embeds into the ‘natural’ semantics considered
initially. Our treatment thus combines the best of both worlds for each of the logics: we
establish soundness for a large class of models, whereas the logics are proved complete
for a much smaller class. The complexity of each of the logics then follows by analysing
the complexity of backwards proof search in the given sequent calculus.

The main contributions of this paper are the cut-free axiomatisation of three dif-
ferent modal logics and the completeness proof of this axiomatisation using coalgebraic
methods. The sequent calculi appear to be new in each case. While the soundness proofs
are certainly standard, completeness relies on coalgebraic techniques. Rather than ex-
hibiting a fully fledged (canonical) model construction, we can make do with showing
that the rules that generate the sequent systems are one-step complete: we interpret all
logics over T -coalgebras (X, γ : X → TX) for suitably chosen T , where γ is the transi-
tion function. One-step completeness now stipulates that all sequents valid over the set
of ‘successors’ TX should be derivable via modal rules whose premises are already valid
over X, where X is an arbitrary set. For probabilistic and stochastic modal logic, the
question of one-step completeness can be translated into a linear programming problem
over the rational domain, which fails for the case of graded modal logic, where we use
maximal consistent sets, but only at the level of one-step successors.

The coalgebraisation of all three logics moreover allows us to apply a number of
generic (coalgebraic) results: with the help of [2] we obtain completeness and Exptime

decidability of an extension of each logic with least/greatest fixpoints, [7] allows us to
construct generic (tableau) algorithms for the global consequence problem, and [17,8]
provides an Exptime complexity bound and optimal tableau algorithm, respectively, of
hybrid extensions over arbitrary sets of global assumptions. As such, the paper does
not present any new results concerning the coalgebraic interpretation of modal logics.
Rather, we show how coalgebraic methods can be used to obtain results about existing
modal logics.

Related Work. Probabilistic modal logic, as studied in this paper, can be seen as an
extension of the probabilistic modal logic presented in [9] with linear inequalities and
is a notational variant of the probabilistic logic considered in [5,4], where a complete
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axiomatisation in a Hilbert-style proof system and a proof of Pspace-decidability is
presented. Our contribution here is a cut-free sequent system that allows for purely
syntax driven implementations of satisfiability checking that are amenable to standard
optimisations [10,20].

The extension of graded modal logic extended with linear inequalities considered here
is a fragment of Presburger modal logic with regularity constraints [3] but subsumes Ma-
jority logic [11] and the both (standard form of) graded modal logic [6] and description
logics with qualified number restrictions [1]. In absence of linear inequalities, this logic
is known to be Pspace complete [18] and Pspace-completeness in presence of linear
inequalities was shown in [3], but no complete axiomatisation appears to be known so
far, which is provided here.

For stochastic modal logic, we are not aware of any results concerning completeness
and complexity.

2 Preliminaries and Notation

2.1 Preliminaries on Sequent Calculi

Throughout the paper, we fix a set V of propositional variables. As we will be dealing
with three different modal logics, it is convenient to isolate their syntactical differences
into a modal similarity type, i.e. a set of modal operators with associated arities. Given
a modal similarity type Λ, the set F(Λ) of Λ-formulas is given by the grammar

F(Λ) 3 A,B ::= p | ¬A | A ∧B | ♥(A1, . . . , An)

where p ∈ V and ♥ ∈ Λ is n-ary. If F ⊆ F(Λ) is a set of formulas, then we write

Λ(F ) = {♥(A1, . . . , An) | ♥ ∈ Λ n-ary, A1, . . . , An ∈ F}

for the set of formulas consisting of modalities applied to elements of F . If σ : V→ F(Λ)
is a substitution, then Aσ denotes the result of replacing all occurrences of p ∈ V in A

by σ(p).
A sequent is a finite multiset (so that contraction is made explicit) of formulas that

we read disjunctively. We identify A ∈ F(Λ) with the sequent {A} and write Γ,∆ for
the (multiset) union of Γ and ∆. If F ⊆ F(Λ) is a set of formulas, we write S(F ) for the
set of those sequents that only contain elements of F , possibly negated. Substitution
applies pointwise to sequents, respecting multiplicity so that Γσ = {Aσ | A ∈ Γ}. The
three logics we consider in this paper can be axiomatised by one-step rules, that is, rules
of the form

Γ1 . . . Γn
Γ0

where Γ1, . . . ,Γn ∈ S(V) and Γ0 ∈ S(Λ(V)). If R is a set of one-step rules, we write
R ` Γ if Γ is an element of the least set of sequents that is closed under the propositional
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rules and all substitution instances of one-step rules, that is under the rules

p,¬p,∆
A,Γ
¬¬A,Γ

¬A,¬B,∆
¬(A ∧B),∆

A,∆ B,∆
A ∧B,∆

Γ1σ . . . Γnσ
Γ0σ,∆

where p ∈ V, σ : V → F(Λ) and ∆ ∈ S(F(Λ)) is a weakening context. It is easy to see
that the propositional part of this calculus can be embedded into the system GS3p of
[19] which is known to be sound and complete. The concrete syntactical presentation
of the modal rules for the logics considered here is most conveniently expressed using
the following notation. If c1, . . . , cm, k ∈ Q are rational numbers, a1, . . . , am ∈ V are
propositional variables and Γ = {ai | i ∈ I} ∪ {¬aj | j /∈ I} then

Γ ∈
m∑
j=1

cjaj ≥ k ⇐⇒
∑
i∈I

ci ≥ k

so that we may use
∑m
i=1 ciai ≥ k to denote a set of sequents that we think of the set

of premises of a proof rule. We write sign(q) for the sign of a rational number q and, if
A is a formula and r 6= 0, we put sg(r)A = A if r > 0 and sg(r)A = ¬A, otherwise.

2.2 Coalgebraic Preliminaries

If T : Set→ Set is an endofunctor, a T -coalgebra is a pair (X, γ) where X is a (carrier)
set and γ : X → TX is a (transition) function. We think of T -coalgebras as playing the
role of frames, and take a T -model to be a T -coalgebra equipped with a valuation, i.e.
a triple (X, γ, π) where (X, γ) is a T -coalgebra and π : V → P(X) is a valuation of the
propositional variables.

Given a similarity type Λ, we can interpret Λ-formulas over T -models provided T

extends to a Λ-structure, i.e. T comes equipped with a predicate lifting (a set-indexed
family of maps)

(J♥KX : P(X)n → P(TX))X∈Set

for every n-ary ♥ ∈ Λ that satisfies the naturality requirement

(Tf)−1 ◦ J♥KY (S1, . . . , Sn) = J♥KX(f−1(S1), . . . , f−1(Sn))

for all f : X → Y and all S1, . . . Sn ⊆ Y . If M = (X, γ, π) is a T -model, the semantics
of modal formulas is now defined as expected for propositional connectives

JpKM = π(p) J¬AKM = X \ JAKM JA ∧BKM = JAKM ∩ JBKM

together with the clause

J♥(A1, . . . , An)KM = γ−1 ◦ J♥KX(JA1KM , . . . , JAnKM )

for the modal operators. We write M,x |= A in case x ∈ JAKM and M |= A if M,x |= A

for all x ∈ X. Finally, we write T |= Γ if M |= Γ for all T -models M . The glue between
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the axiomatisation (in terms of one-step rules) and the modal semantics is provided by
the following notions:

Definition 2.1 Suppose that Λ is a modal similarity type, T a Λ-structure and R a set
of one-step rules over Λ. We introduce the following notions in case X is a set and
τ : V→ P(X) is a valuation:

(i) If Γ ∈ S(V) is a propositional sequent, we write JΓK(X,τ) =
⋃
{JAK(X,τ) | A ∈ Γ}

(where JpK(X,τ) = τ(p)) for the interpretation of a sequent Γ ∈ S(V) with respect to
τ and (X, τ) |= Γ in case Γ is τ -valid, i.e. JΓK(X,τ) = X.

(ii) Similarly, if Γ ∈ S(Λ(V )) we write JΓK(TX,τ) =
⋃
{JAK | A ∈ Γ} (where

J♥(a1, . . . , an)K(TX,τ) = J♥KX(τ(a1), . . . , τ(an))) for the interpretation of a
modalised sequent with respect to τ , and (TX, τ) |= Γ in case Γ is τ -valid, i.e.
JΓK(TX,τ) = TX.

(iii) Finally, a sequent Γ ∈ S(Λ(V)) is τ -derivable (with respect to R) if there exists
Γ1 . . .Γn/Γ0 ∈ R and σ : V → V such that all Γiσ are τ -valid for 1 ≤ i ≤ n and
Γ0σ ⊆ Γ.

We can now justify the sum notation introduced earlier:

Lemma 2.2 Suppose that τ : V→ P(X) is a valuation. Then

∀x ∈ X

 m∑
j=1

cj1τ(aj)(x) ≥ k

 ⇐⇒ ∀ Γ ∈
m∑
j=1

cjaj ≥ k ((X, τ) |= Γ) .

Moreover, we can relate one-step rules and coalgebraic semantics as follows:

Definition 2.3 Suppose Λ is a modal similarity type and T : Set→ Set is a Λ-structure.
We say that a set R of one-step rules is one-step sound (resp. one-step cut-free com-
plete) if, for all valuations τ : V→ P(X) and all Γ ∈ S(Λ(V)): Γ is τ -derivable if (resp.
only if) Γ is τ -valid.

We note that the notions of one-step soundness and one-step (cut-free) completeness do
not quantify over models: both conditions can be checked locally. Importantly, these
notions give rise to soundness and cut-free completeness in the standard way.

Theorem 2.4 Suppose R is a set of one-step rules over a modal similarity type Λ and
let T be a Λ-structure. If Γ ∈ S(Γ) and

(i) R is one-step sound, then |= Γ whenever R ` Γ

(ii) R is one-step cut-free complete, then R ` Γ whenever T |= Γ.

The proof of the last theorem can be found in [13] but it should be remarked that this
type of coherence condition between syntax and semantics is well studied: [12,15] use
similar (weaker) coherence conditions to obtain soundness and completeness of a Hilbert
system and [16] uses strict completeness to obtain what essentially amounts to a cut-free
sequent system.
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3 Probabilistic Modal Logic

We start our investigation into modal logics of linear inequalities by considering prob-
abilistic modal logic where we may allow ourselves linear inequalities to specify the
relationships between individual formulas. That is, we consider the modal similarity
type

Λ = {Lp(c1, . . . , cm) | m ∈ N, p, c1, . . . , cm ∈ Q}

where the arity of Lp(c1, . . . , cm) is m. We interpret probabilistic modal logic over state
spaces X where every point x ∈ X induces a probability distribution µ over successor
states. Informally, validity of Lp(c1, . . . , cm)(A1, . . . , Am) at point x ∈ X means that
the linear inequality

∑m
j=1 cjµ(Aj) ≥ p holds, where µ(Aj) is the measure of the truth-

set of the formula Aj , seen from point x. In particular this allows us to compare the
probabilities of events:

Example 3.1 According to a recent experience of the second author with a well-known
budget airline, we may consider a state space comprising all European airports, and we
may think of the probability distribution associated with a particular city as giving us the
probability of landing at a particular airport when boarding any flight of this carrier. In
this logic, which we refrain from calling EasyLogic, we can for instance express that land-
ing in England is 5 times as likely as landing in Scotland as L0(1,−5)(England,Scotland)
(which is reasonable to assume for carriers that are based in England). The second au-
thor however doubts that the business model of said budget airline can be axiomatised
in any logic.

We axiomatise probabilistic modal logic with linear inequalities and prove soundness and
completeness with respect to two different classes of models. The (complete, cut-free)
axiomatisation is induced by the set R of one-step rules that comprises all instances of

(P )

∑n
i=1 ri

(∑mi

j=1 c
i
j · aij

)
≥ k

{sg(ri)Lpi
(ci1, . . . , cimi

)(ai1, . . . , aimi
) | i = 1, . . . , n}

where r1, . . . , rn ∈ Z \ {0} and k ∈ Z that satisfy the side condition

n∑
i=1

ripi < k if all ri < 0, and
n∑
i=1

ripi ≤ k otherwise.

We first treat soundness of probabilistic modal logic, interpreted over Markov chain
models before showing completeness over a class of coalgebraic models that corresponds
to finitely supported Markov chains.

3.1 Markov Chain Semantics and Soundness

The first semantics of probabilistic modal logic is given with respect to Markov models.
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Definition 3.2 A Markov model is a triple (X,µ, π) where X is a measurable space with
σ-algebra ΣX , π : V → ΣX is a valuation and µ : X × Σ → [0, 1] is a Markov kernel,
that is, µ(x, ·) : Σ→ [0, 1] is a probability measure for all x ∈ X and µ(·, S) : X → [0, 1]
is measurable for all S ∈ ΣX .

If M = (X,µ, π) is a Markov model, then the semantics JAKM ∈ ΣX is given as expected
for the propositional connectives (where atomic propositions are mapped to measurable
sets) and the clause for modal operators is

JLp(c1, . . . , cm)(A1, . . . , Am)KM = {x ∈ X |
m∑
j=1

cjµ(x, JAjKM ) ≥ pK

where we write M,x |= A if x ∈ JAKM and M |= A if M,x |= A for all x ∈ X. Finally
Mark |= Γ if M |=

∨
Γ for all Markov models M . Note that the measurability conditions

guarantee that the truth-set JAKM of a formula is always measurable. We now show
soundness of probabilistic modal logic with respect to Markov models.

Proposition 3.3 Mark |= Γ whenever R ` Γ.

Proof. Suppose that M = (X,µ, π) is a Markov model and R ` Γ. We show that
M |= Γ by induction on the proof of R ` Γ where the application of an instance of (P )
is the only interesting case.

Consider the sequent Γ appearing as the conclusion of the rule∑n
i=1 ri

∑mi

j=1 c
j
iA

j
i ≥ k

{sg(ri)Lpi
(c1i , . . . , c

mi
i )(A1, . . . , Am) | i = 1, . . . , n}

the applicability of which is ensured by the side condition

n∑
i=1

ripi < k if all ri < 0, and
n∑
i=1

ripi ≤ k otherwise.

By induction hypothesis,
n∑
i=1

ri

mi∑
j=1

cji1JAj
i KM

(x) ≥ k

for all x ∈ X. Now suppose for a contradiction that there exists an x ∈ X so that
M,x 6|= Γ. If µ = µ(x, ·) then this implies that

n∑
i=1

ri

mi∑
j=1

cjiµ(JAji KM ) ≥ k

by integrating both sides with respect to µ, and

mi∑
j=1

cjiµJAji KM ≥ pi (if ri < 0), and
mi∑
j=1

cjiµJAji KM < pi (if ri > 0)
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for all i = 1, . . . , n. In summary, this implies that

k ≤
n∑
i=1

ri

mi∑
j=1

cjiµ(JAji KM ) ≤
n∑
i=1

ripi ≤ k

where either the last or the penultimate inequality are strict so that k < k in both cases,
contradicting M,x 6|= Γ and therefore proving the claim. 2

We next establish completeness over a smaller class of models, that is, Markov chains
where the transition measures are finitely supported. Crucially, these fit into the frame-
work of coalgebraic semantics:

3.2 Coalgebraic Semantics and Completeness

We write supp(f) = {x ∈ X | f(x) 6= 0} for the support of a function f : X → R and
consider the functor D : Set→ Set where

D(X) = {µ : X → [0, 1] | supp(µ) finite,
∑
x∈X

µ(x) = 1}

that extends to a Λ-structure by stipulating that

JLp(c1, . . . , cn)KX(S1, . . . , Sn) = {µ ∈ D(X) |
n∑
i=1

ci · µ(Si) ≥ p}

for S1, . . . , Sn ⊆ X where µ(S) =
∑
x∈X µ(x). As spelled out in Section 2.2 this induces

an interpretation JAKM ⊆ X of Λ-formulas over D-models M = (X, γ, π). We now show
that the set R of one-step rules consisting of all instances of (P ) is indeed one-step
complete, which is the content of the next lemma.

Lemma 3.4 Consider a valuation τ : V → P(X) and suppose that Γ ∈ S(Λ(V)) is
τ -valid. Then Γ is τ -derivable.

Proof. Suppose that Γ = {sg(εi)Lpi(c
1
i , . . . , c

mi
i )(a1

i , . . . , a
mi
i ) | i = 1, . . . , n} where

ε1, . . . , εn ∈ {−1, 1}, the pi and cji ∈ Q and the aji ∈ V. Furthermore let τ : V → P(X)
be a valuation such that Γ is τ -valid. To see that Γ is τ -derivable, we show that there
exist k, r1, . . . , rn ∈ Z so that

(i)
∑n
i=1 r

2
i > 0 (i.e. at least one of the r1, . . . , rn is non-zero)

(ii) sign(ri) = sign(εi) for all i = 1, . . . , n with ri 6= 0

(iii)
∑n
i=1 ri

(∑mi

j=1 c
i
j · 1τ(ai

j)
(x)
)
≥ k for all x ∈ X

(iv)
∑n
i=1 ripi ≤ k if at least one εi is positive, and

∑n
i=1 ripi < k otherwise.

We define an equivalence relation ∼ on X by

x ∼ y ⇐⇒
(
x ∈ τ(aji ) ⇐⇒ y ∈ τ(aji )

)
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for all i = 1, . . . , n and all j = 1, . . . ,mi. Assume that x1, . . . , xk ∈ X are the (finitely
many) representatives of the equivalence classes of X under ∼. Consider the matrices

A0 =



−ε1 0 0
. . .

...

0 −εn 0

−f1(x1) . . . −fn(x1) 1
...

...

−f1(xk) . . . −fn(xk) 1


A1 = ( p1 . . . pn − 1)

where fi =
∑mi

j=1 c
j
i · 1τ(aj

i )
and let A =

A0

A1

. We note the following properties,

where y = (y1, . . . , yn, ŷ1, . . . , ŷk, y0) ∈ Qn+k+1
≥0 :

(i) if b = (b1, . . . , bn, 0, . . . , 0) with
∑n
i=1 b

2
i > 0, yTA = 0 and yT b < 0 then y0 > 0.

(ii) if y0 = 1 and yTA = 0, then the assignment µy(xi) = ŷi and µy(x) = 0 if x /∈
{x1, . . . , xk} is a finitely supported probability distribution with

mi∑
j=1

cji · µy(τ(aji )) = pi − εiyi

for all i = 1, . . . , n.

For item (i) we assume (for a contradiction) that y0 = 0 and consider the last column
of A to obtain

∑k
l=1 ŷl−y0 = 0 hence ŷ1 = · · · = ŷk = 0 as y ∈ Qn+k+1

≥0 . Now, considering
the i-th column of A, we have that 0 = −εiyi −

∑k
l=1 ŷlfl(xi) + piy0 = −εiyi whence

yi = 0 for all i = 1, . . . , n so that, in summary, y = 0, contradicting yb < 0.
Finally, for item (ii), we first consider the last column of A and deduce from yA = 0

that
∑k
l=1 ŷl − y0 = 0 so that

∑k
l=1 ŷl = 1 and µy is a finitely supported probability

distribution as y ∈ Qn+k+1
≥0 . Moreover, considering the i-th column of A, the equality
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y ·A = 0 gives

0 = −εiyi −
k∑
l=1

ŷlfi(xl) + y0pi

= −εiyi −
k∑
l=1

ŷl ·
mi∑
j=1

cji · 1τ(aj
i )

(xl) + pi

= −εiyi −
mi∑
j=1

cji ·
k∑
l=1

ŷl · 1τ(aj
i )

(xl) + pi

= −εiyi −
mi∑
j=1

cji · µ(τ(aji )) + pi

so that
∑mi

j=1 c
j
iµy(τ(aji )) = pi − εiyi as required.

According to the statement of the theorem, we distinguish the following cases.
Case 1: At least one εi is positive. The claim follows (by multiplying with a common

denominator) if there exists b = (b1, . . . , bn, 0, . . . , 0) ∈ Qn
≤0 with

∑
i=1,...,n b

2
i 6= 0 so

that the system of linear inequalities

Ar ≤ bT (1)

has a solution r = (r1, . . . , rn, k)T .
Now suppose, for a contradiction, that Equation (1) does not have a solution for any

choice of b1, . . . , bn ∈ Q≤0 with
∑n
i=1 b

2
i > 0. Then, by Farkas’ Lemma in the form of

[14, Corollary 7.1 (e)], there exists, for every b = (b1, . . . , bn, 0, . . . , 0) ∈ Qn+k+1
≤0 with∑n

i=1 b
2
i > 0, a vector yb ∈ Qn+k+1

≥0 such that yTb A = 0 and yTb · b < 0. Now consider the
(non-empty) set

I+ = {i ∈ {1, . . . , n} | εi > 0}
and, for i ∈ I+, the vector

bi = (0, . . . , 0,−1, 0, . . . , 0)T ∈ Qn+k+1

where −1 appears in the i-th coordinate. By Farkas’ Lemma, this gives a vector yi so
that (yi)TA = 0 and (yi)T b < 0. In particular, yi0 6= 0 by item (i) so that we may
assume that yi0 = 1 by linearity for all i ∈ I+. Moreover, yT b < 0 implies that yii > 0
for all i ∈ I+. Now consider y = 1

]I+

∑
i∈I+ yi and let y = (y1, . . . , yn, ŷ1, . . . , ŷk, y0).

By linearity, we have y0 = 1, yTA = 0 and yi =
∑
h∈I+ y

i
h ≥ yii > 0. By item (ii) above

the vector y induces a finitely supported probability measure µ so that

•
∑mi

j=1 c
j
i · µ(τ(aji )) = pi − εiyi > pi if i ∈ I+ as yi > 0 and εi = +1

•
∑mi

j=1 c
j
i · µ(τ(aji )) = pi − εiyi ≤ pi if i /∈ I+ since εi = −1 and yi ≥ 0.

As a consequence, we have that µ /∈ Jsg(εi)Lpi
(c1i , . . . , c

mi
i )(a1

i , . . . , a
mi
i )KD(X),τ for

all i = 1, . . . , n which contradicts our assumption that D(X), τ |= Γ. This finishes our
treatment of the first case.
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Case 2: ε1 = · · · = εn = −1. The claim follows if we can show that there exists
b = (b1, . . . , bn, 0, . . . , 0) ∈ Qn+k

≤0 with
∑n
i=1 b

2
i > 0 so that the system

A0r ≤T b A1r < 0 (2)

has a solution r = (r1, . . . , rn, k).
Suppose for a contradiction, that (2) has no solution for all b = (b1, . . . , bn, 0, . . . , 0) ∈

Qn+k
≤0 with

∑n
i=1 b

2
i > 0. In particular, (2) has no solution for b = (−1, . . . ,−1, 0, . . . , 0).

By Motzkin’s transposition theorem in the form of [14, Corollary 7.1 (k)], there exists

y = (y1, . . . , yn, ŷ1, . . . , ŷk, y0) ∈ Qn
≥0

so that yTA = yTA0 + yTA1 = 0 and either y0 = 0 and yb < 0 or y0 6= 0 and yb ≤ 0.
By (i) the case y0 = 0 and yT b < 0 is impossible, so we may assume that y0 6= 0 and

yT b ≤ 0, and, without loss of generality that y0 = 1.
By item (ii) the vector y induces a finitely supported probability measure µ so that

mi∑
j=1

cji · µ(τ(aji )) = pi + yi ≥ pi.

Hence µ /∈ J¬Lpi
(c1i , . . . , c

mi
i )(τ(a1

i ), . . . , τ(ami
i )KD(X),τ for any i = 1, . . . , n which implies

that D(X), τ 6|= Γ, again contradicting our assumption that D(X), τ |= Γ. Having
reached a contradiction in both cases finishes the proof. 2

We obtain completeness of probabilistic modal logic with respect to D-models as a
corollary of Theorem 2.4.

Corollary 3.5 R ` Γ whenever D |= Γ.

We summarise our results about probabilistic modal logic with linear inequalities in the
next theorem, that ties the two different semantics together.

Theorem 3.6 Let Γ ∈ S(Λ). Then D |= Γ whenever Mark |= Γ. As a consequence, the
following are equivalent:
(i) R ` Γ (ii) Mark |= Γ (iii) D |= Γ.

Proof. We just need to show that D |= Γ whenever Mark |= Γ as the other assertions
are covered in Corollary 3.5 and Proposition 3.3. So suppose that Mark |= Γ and take
a D-model M = (X, γ, π) and equip X with the trivial σ-algebra ΣX = P(X). Then
µ(x, S) = γ(x)(S) is a Markov kernel. If M ′ = (X,µ, π) one shows by induction on the
structure of formulas that JAKM = JAK′M whence M |= Γ. This proves that D |= Γ as
M was arbitrary. 2

4 Graded Modal Logic

As for probabilistic modal logic, the graded modal logic features linear inequalities com-
prising the number of successors in a Kripke model. As for probabilistic modal logic, we
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consider modal operators Lp(c1, . . . , cn) but p, c1, . . . , cn are now required to be integers.
In other words, we consider the modal similarity type

Λ = {Lp(c1, . . . , cm) | m ∈ N, p, c1, . . . , cm ∈ Z}

that defines the set F(Λ) of formulas of graded modal logic. For p ∈ Z we write
Lp as a shorthand for the unary modality Lp(1). If A1, . . . , An ∈ F(Λ), then
Lp(c1, . . . , cn)(A1, . . . , An) is valid at a point c if the linear inequality

∑m
j=1 cj]Aj ≥ p

holds, where ]Aj is the number of successors of c that satisfy Aj .

Example 4.1 We may use graded modal logic to reason about supporters of different
football teams. Consider a Kripke model M = (X, γ : X → P(X), π) where X repre-
sents individuals. We think of x′ ∈ γ(x) as representing that individual x “knows” x′.
If Arsenal and Chelsea are propositional variables that hold for those individuals that
support the respective football team, then the second author (living in North London)
would satisfy the formula L0(1,−5)(Arsenal,Chelsea) that stipulates that the individual
in question knows at least 5 times as many Arsenal than Chelsea supporters – which is
not valid for the first author (who resides in South London).

To obtain a sound and complete axiomatisation of graded modal logic with linear in-
equalities, we consider the set R of one-step rules that consists of all instances of

(G)

∑n
i=1 ri ·

∑mi

j=1 c
j
ia
j
i ≥ 0

{sg(ri)Lpi
(ci1, . . . , cimi

)(ai1, . . . , aimi
) | i = 1, . . . , n}

where r1, . . . , rn ∈ Z \ {0} under the side condition∑
ri>0

ri(pi − 1) +
∑
ri<0

ripi < 0

As before, we first discuss soundness of the ensuing sequent system with respect to
Kripke frames, then provide completeness with respect to a coalgebraic semantics in
terms of multigraphs, and then compare the two classes of models.

4.1 Kripke Semantics and Soundness

We define the semantics of graded modal logic with respect to image finite Kripke models,
essentially following Demri and Lugiez [3] and thus generalising the definitions of Fine
[6] and of Pacuit and Salame [11]. By an image finite Kripke model, we mean a triple
(X, γ, π) where, as usual, X is the set of worlds, γ : X → Pf (X) assigns a finite set of
successors to every x ∈ X and π : V → P(X) is a valuation. The semantics of F(Λ)
with respect to a Kripke model M = (X, γ, π) is given by the usual propositional rules,
together with

M,x |= Lp(c1, . . . , cm)(A1, . . . , Am) ⇐⇒
m∑
j=1

cj · ](γ(x) ∩ JAjKM ) ≥ p
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where JAKM = {x ∈ X | M,x |= A} is the truth-set of A, and ] denotes cardinality.
As usual, M |= A if M,x |= A for all x ∈ X. We write Krip |= Γ for Γ ∈ S(F(Λ)) if
M |=

∨
Γ for all Kripke models M = (X, γ, π).

Proposition 4.2 Krip |= Γ whenever R ` Γ.

Proof. Consider a Kripke model M = (X, γ, π) and suppose that R ` Γ. We show that
M |= Γ by induction on the proof of R ` Γ, where the application of an instance of (G)
is the only interesting case. Consider the modal rule∑n

i=1 ri
∑mi

j=1 c
j
i ·A

j
i ≥ 0

{sg(ri)Lpi
(c1i , . . . , c

mi
i )(A1

i , . . . , A
mi
i ) | i = 1, . . . , n}

the applicability of which assumes that the side condition∑
ri<0

ripi +
∑
ri>0

ri(pi − 1) > 0 (3)

holds. By induction hypothesis, we may assume that

n∑
i=1

ri

mi∑
j=1

cji · 1JAj
i KM

(x) ≥ 0

for all x ∈ X. To see that M,x |= Γ, note that the above inequality implies that

n∑
i=1

ri

mi∑
j=1

cji · ](γ(x) ∩ JAji KM ) =
∑

x′∈γ(x)

n∑
i=1

ri

mi∑
j=1

cji · 1JAj
i KM

(x′) ≥ 0 (4)

Now suppose, for a contradiction, that M,x 6|= Γ. Then we have

mi∑
j=1

cji ](γ(x) ∩ JAji KM ) < p

in case ri > 0 and
mi∑
j=1

cji ](γ(x) ∩ JAji KM ) ≥ p

if ri < 0. Combining the side condition (3) with (4) this gives

0 ≤
∑
ri<0

ripi +
∑
ri>0

ri(pi − 1) < 0

i.e. the desired contradiction. 2

This shows that graded modal logic is sound with respect to Kripke frames. We next
establish completeness of graded modal logic with respect to multigraphs before we relate
the different types of semantics.
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4.2 Coalgebraic Semantics and Completeness

We consider the functor

B(X) = {f : X → N | supp(f) is finite}

that extends to a Λ-structure by stipulating that

JLp(c1, . . . , cm)KX(S1, . . . , Sm) = {f ∈ B(X) |
m∑
j=1

cj · f(Sj) ≤ p}

where X is a set and S1, . . . , Sm ⊆ X and f(S) =
∑
x∈S f(x) for S ⊆ X. We may think

of a B-coalgebra (X, γ : X → B(X)) as a multigraph where every edge is assigned an
integer weight.

For the whole section, we fix the set R of one-step rules that comprises all instances
of (G). Completeness of graded modal logic with linear inequalities is proved using a
variant of a canonical model construction, but at the level of one-step formulas. We note
two simple properties that correspond to admissibility of contraction of cut, but at the
level of one-step derivations.

Lemma 4.3 Suppose τ : V→ P(X) is a valuation.

(i) if Γ, A,A is τ -derivable, then so is Γ, A.

(ii) if Γ, A and Γ,¬A are τ -derivable, then so is Γ.

Proof. Both are immediate from the rule format: for the first item, we obtain a new
instance of (G) that witnesses derivability of Γ, A by simply adding the coefficients that
induce both occurrences of A. For the second item, we are given two rule instances
that witness derivability of Γ, A and Γ,¬A that we normalise so that the coefficients
associated with A and ¬A have the same magnitude and then add (the coefficients of)
both rules. 2

The next lemma ensures that every consistent set of formulas can be satisfied, at the
one-step level, by an assignment of integer weights that is bounded.

Lemma 4.4 Suppose that τ : V → P(X) is a valuation and let Γ ∈ S(Λ(V)) so that Γ
is not τ -derivable.

(i) for all a ∈ V, there exists p ≥ 0 so that Γ, Lpa is not τ -derivable.

(ii) If Lpa ∈ Γ, then Γ,¬Lp+na is τ -derivable for all n ≥ 0.

Proof. The first item is by contraposition: If Γ, LpA were derivable for all p ≥ 0 we
obtain a contradiction in terms of the inequalities in premise and side condition of the
rules. For the second item, one shows that Lpa,¬Lp+na is derivable for all n ≥ 0. 2

One-step completeness is now content of the following lemma.

Lemma 4.5 Suppose that τ : V → P(X) is a valuation, X is finite and Γ ∈ S(Λ(V)).
If B(X), τ |= Γ, then Γ is τ -derivable.
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Proof. Suppose, for a contradiction, that Γ is not τ -derivable. Pick, for all x ∈ X,
pairwise distinct propositional variables bx not occurring in Γ and let τ(bx) = {x}.
Repeated application of Lemma 4.4 gives, for all (finitely many) x ∈ X, a number
kx ∈ N so that

Γ′ = Γ ∪ {Lkx
bx | x ∈ X}

is not τ -derivable. By Lemma 4.3 the same holds for the sequent supp(Γ) that we may
extend to a maximal subset M⊆ Λ(V)∪¬Λ(V) with the property that no finite subset
∆ ⊆M, viewed as a multiset where every element has multiplicity one, is derivable. We
now define a measure µ : X → N by

µ(x) = max{p ∈ N | ¬Lp(bx) ∈M}

for all x ∈ X and write µ(A) =
∑
x∈A µ(x) as usual. Note that µ(x) ∈ N by Lemma

4.4. We now claim that

¬Lµ(τ(a))a ∈M and Lµ(τ(a))+1a ∈M

for all a ∈ V. For the first point, note that ¬Lµ(x)bx ∈M by definition of µ and consider
the rule

−
∑
x∈τ(a) bx + a ≥ 0

{¬Lµ(x)bx | x ∈ τ(a)} ∪ {Lµ(τ(a))a}
that witnesses Lµ(τ(a))a /∈ M as M is not derivable, and hence ¬Lµ(τ(a))a ∈ M by
Lemma 4.3. The proof of the second point is entirely dual.

We now establish that

sg(ε)A ∈M =⇒ µ /∈ Jsg(ε)AK(B(X),τ)

for all A ∈ F(Λ) and all ε ∈ {−1,+1}. Let A = Lp(c1, . . . , cm)(a1, . . . , am). For the
case ε = +1 assume for a contradiction that µ ∈ JAK(B(X),τ) so that

m∑
j=1

cjµ(aj) ≥ p.

Consider the rule (the side condition of which is readily established)

c1a1 + · · ·+ cmam +
∑m
j=1 cjaj ≥ 0

{¬Lµ(τ(aj))aj | cj < 0} ∪ {Lµ(τ(aj))+1aj | cj > 0} ∪ {Lp(c1, . . . , cj)(a1, . . . , aj)}

that witnesses A /∈M asM is not derivable, contradicting A ∈M. The case for ε = −1
is entirely dual.

In summary our assumption that Γ is not τ -derivable, we obtain that µ /∈ JΓK(B(X),τ)

contradicting that Γ is τ -valid.
2

As a corollary, we obtain that the set R comprising all instances of (G) is one-step
complete.



250 On Modal Logics of Linear Inequalities

Proposition 4.6 R ` Γ whenever B |= Γ.

Proof. By Lemma 4.5 we have that R is one-step cut-free complete over finite sets,
which implies that R is one-step complete. This can either be seen as a consequence of
[13, Proposition 4.5] or directly: Given that BX, τ |= Γ let V0 denote the propositional
variables that occur in Γ and define an equivalence relation ∼ on X by x ∼ y ⇐⇒ ∀p ∈
V0(x ∈ τ(p) ⇐⇒ y ∈ τ(p)). Let X0 = X/ ∼ and τ0(p) = {[x]∼ | x ∈ τ(p)}. Then
B(X0), τ0 |= Γ by naturality of predicate liftings whence Γ is τ0-derivable by Lemma 4.5
which implies τ -derivability of Γ. Completeness now follows from one-step completeness
(Theorem 2.4). 2

Theorem 4.7 Let Γ ∈ S(Λ). Then B |= Γ whenever Krip |= Γ. In particular, the
following are equivalent:
(i) R ` Γ (ii) Krip |= Γ (iii) B |= Γ

witnessing soundness and completeness of graded modal logic with linear inequalities both
over Kripke frames and multigraphs.

Proof. We only need to show that B |= Γ whenever Krip |= Γ, as the other claims are
consequences of Proposition 4.2 and Proposition 4.6. So suppose that Γ ∈ S(F(Λ)) and
M = (X, γ, π) is a B-model so that M 6|= Γ, i.e. there exists x0 ∈ X so that M,x0 6|= Γ.
We construct a Kripke model M ′ = (X ′, γ′, π′) by unravelling at x0: we put

• X ′ = {x0
w1→ x1

w2→ · · · wn→ xn | n ≥ 0, 0 ≤ wi < γ(xi)(xi+1)}
• γ′(x0

w1→ · · · wn→ xn) = {x0
w1→ · · · wn→ xn

wn+1→ xn+1 | 0 ≤ wn+1 < γ(xn)(xn+1)}
• π′(p) = {x0

w1→ · · · wn→ xn | xn ∈ π(p)}.

In other words, the worlds of the Kripke model (X ′, γ′, π′) are the paths from the initial
point x0 ∈ X where we make duplicates of states according to the multiplicity of the
transition. It now follows by induction on the structure of formulas that

M,x |= A =⇒ M ′, x′ |= A

whenever x′ is of the form x0
m1→ · · · wn→ xn with xn = x. In particular, M ′ 6|= Γ as we

had to show. 2

5 Stochastic Logic

We may think of stochastic logic as a hybrid between probabilistic modal logic and
graded modal logic. As for probabilistic modal logic, every state of a model is equipped
with a measure, but we do not insist that this measure be a probability measure. If c
is a state in a stochastic model and µ the ensuing measure, we may think of µ(JAK) as
the total cost of observing event A in the next transition state. As before, our formulas
are linear inequalities in terms of the measures of the (truth sets of) formulas. In other
words, we consider the similarity type

Λ = {Lp(c1, . . . , cm) | m ∈ N, p, c1, . . . , cm ∈ Q}
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defining the formulas F(Λ) of stochastic modal logic. (Note that the syntax of stochas-
tic modal logic is identical to that of probabilistic modal logic.) Informally speaking,
the formula Lp(c1, . . . , cm)(A1, . . . , Am) is valid at a point c, if the linear inequality∑m
j=1 cjµ(Aj) ≥ p holds, where µ(Aj) is the measure of the truth-set of Aj as seen from

point c.

Example 5.1 At the time of writing this paper, both authors frequently discussed the
outcome of the (then) upcoming general election in their country of residence. To this ef-
fect, one may consider a stochastic model based on the set of inhabitants of said country.
To every inhabitant c, we associate a measure that – applied to a subset S of the popula-
tion – yields the overall amount of persuasion (measured as a non-negative real number)
that c would have to apply in order to swing the votes of all elements of S into a partic-
ular direction. If Tory and Labour are propositional variables that denote the respective
political angle, there was a heated debate whether the formula ¬L0(1,−1)(Tory, Labour),
L0(1,−1)(Labour,Tory) or L0(1,−1)(Tory, Labour) ∧ L0(1,−1)(Labour,Tory) yields the
most realistic model (both authors still hope that this did apply to L0(−1)(>)).

A sound and complete axiomatisation of stochastic modal logic will be provided by the
set R of one-step rules comprising all instances of

(S)

∑n
i=1 rj

∑mi

j=1 c
j
ia
j
i ≥ 0

{sg(εi)Lpi
(c1i , . . . , c

mi
i )(a1

i , . . . , a
mi
i ) | i = 1, . . . , n}

where r1, . . . , rn ∈ Z \ {0} that satisfy the side condition

n∑
i=1

ripi < 0 if all ri < 0, and
m∑
i=1

ripi ≤ 0 otherwise.

We now establish soundness of stochastic modal logic with respect to the class of finite
measures, prove completeness of stochastic modal logic with respect to finitely based
measures, and then align both views.

5.1 Measurable Semantics and Soundness

Definition 5.2 A measurable model is a triple (X,µ, π) where X is a measurable space
with σ-algebra ΣX , π : V→ ΣX is a valuation and µ : X×ΣX → [0,∞) is a measurable
kernel, i.e. a function so that µ(·, B) : X → [0,∞) is measurable for all B ∈ ΣX and
µ(x, ·) : ΣX → [0,∞) is a measure on X.

Note that we require the measure that is induced my a measurable kernel is always
finite. The semantics of F(Λ) with respect to measurable models is as expected for the
propositional rules (note that atomic propositions are mapped to measurable sets) and
the clause for a modal operator is

JLp(c1, . . . , cm)(A1, . . . , Am)KM = {x ∈ X |
m∑
j=1

cj · µ(x, JAjKM ) ≥ p}
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so that JAKM is a measurable set for all A ∈ F(Λ). We write M,x |= A if x ∈ JAKM and
M |= A if M,x |= A for all x ∈ X. Finally, Meas |= Γ if M |=

∨
Γ for all measurable

models M . Soundness of stochastic modal logic over measurable models is similar to
soundness of probabilistic modal logic and takes the following form.

Proposition 5.3 Meas |= Γ whenever R ` Γ.

Proof. By induction on the proof of R ` Γ analogous to the proof of Proposition 3.3.2

This shows that stochastic modal logic is sound with respect to measurable models. We
now look upon stochastic modal logic coalgebraically and establish completeness.

5.2 Coalgebraic Semantics and Completeness

To interpret stochastic modal logic over coalgebraic models, we consider the functor

M(X) = {µ : X → [0,∞) | supp(µ) finite}

and we write µ(S) =
∑
x∈S µ(x) whenever µ ∈ M(X) and S ⊆ X. The functor M

extends to a Λ-structure by virtue of

JLp(c1, . . . , cm)KX(S1, . . . , Sm) = {µ ∈M(X) |
m∑
j=1

cj · µ(Sj) ≥ p}

where S1, . . . , Sm ⊆ X. We may think (modulo currying) ofM-coalgebras as measurable
kernels with finite support. Completeness of stochastic modal logic over M-coalgebras
is established by means of the following lemma that again uses results from linear pro-
gramming:

Lemma 5.4 Consider a valuation τ : V → P(X) and suppose that Γ ∈ S(Λ(V)) is
τ -valid. Then Γ is τ -derivable.

Proof. We proceed as in the proof of Lemma 3.4 but instead consider the matrix

A0 =



−ε1 0
. . .

...

0 −εn

−f1(x1) . . . −fn(x1)
...

...

−f1(xk) . . . −fn(xk)


A1 = ( p1 . . . pn )
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where fi =
∑mi

j=1 c
j
i · 1τ(aj

i )
and let A =

A0

A1

 and proceed as in the proof of Lemma

3.4 (where the absence of the last column means that we do not define a probability
distribution). 2

As a corollary, we obtain that stochastic modal logic is complete over M-coalgebras.

Corollary 5.5 R ` Γ whenever M |= Γ.

In summary, we obtain the following theorem for stochastic modal logic:

Theorem 5.6 Let Γ ∈ S(Λ). Then M |= Γ whenever Meas |= Γ. In particular, the
following are equivalent:

(i) R ` Γ (ii) Meas |= Γ (iii) M |= Γ.

Proof. We only need to show that M |= Γ whenever Meas |= Γ, as the remaining
assertions are the content corollary 5.5 and Proposition 5.3. So suppose that (X, γ, π)
is aM-model and Meas |= Γ. We equip X with the trivial σ-algebra P(X) and consider
the measurable kernel µ(x, S) =

∑
x′∈S γ(x)(x′). Note that µ is well-defined as γ(x) has

finite support, and so defines a measurable kernel. Let M ′ = (X,µ, π). One now shows
by induction on the structure of formulas that M,x |= A ⇐⇒ M ′, x |= A for all x ∈ X
which finishes the proof. 2

6 Complexity

Given that we have coalgebraised all three logics by equipping them with a sound
and complete coalgebraic semantics, we are now in a position to use generic (coal-
gebraic) methods to establish complexity bounds. As we have a characterisation of
universal validity in terms of a cut-free sequent calculus where the size of the formulas
strictly decreases when we move from conclusion to premise, we can map the decid-
ability problem onto backwards proof search, which we can be seen as the problem of
searching a tree the length of whose branches is polynomially bounded. To see that
this problem is in polynomial space, we have to agree on representations for modal op-
erators. Here, we represent numbers in binary, that is, we put size(n) = dlog2 ne and
size(p/q) = size(p) + size(q) which allows us to define the size of a modal operator as
size(Lp(c1, . . . , cm)) as size(p) +

∑m
j=1 size(ci). To show decidability in Pspace, we have

to show that we can encode rules into strings of polynomial length so that all premises
can be decided in NP. The formal definition is as follows.

Definition 6.1 A set R of one-step rules is Pspace-tractable if there exists a polyno-
mial p such that all substitution instances of rules with conclusion Γ ∈ S(Λ(F(Λ)) can
be encoded into a string of length at most p(|Γ|) and it can be decided in NP whether

• a code represents a (substitution instance) of a rule with a given conclusion Γ
• a sequent belongs to the set of premises of a rule given as a code.
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We can use the methods presented in in [16] to show that the rule sets comprising of
(P ), (G) and (S) are indeed Pspace-tractable.

Lemma 6.2 If R comprises all instances of (P ), (G) or (S), then R is Pspace-
tractable.

Proof. It has been argued in [16, Lemma 6.16] that the coefficients ri that occur in
the rule sets (P ), (G) and (S) can be polynomially bounded in the size of the linear
inequalities (and hence in the size of the rule conclusions), and our argument is essentially
identical to Example 6.17 of op.cit.. 2

As a consequence, we obtain a Pspace upper bound for all three logics considered in
this paper.

Theorem 6.3 The satisfiability problem of probabilistic modal logic, graded modal logic
and stochastic modal logic (each considered with linear inequalities) is decidable in
Pspace.

Proof. One can either invoke Theorem 6.13 of [16] or directly argue in terms of proof
search where the branches of every putative proof tree are polynomially bounded in
length, their nodes can be represented by strings of polynomial length, and membership
in nodes can be decided in NP, all of which are consequences of tractability. This gives
decidability of satisfiability in connection with the completeness (Theorem 3.6, Theorem
4.7 and Theorem 5.6). 2

7 Conclusions

In this paper, we have given complete, cut-free axiomatisations of three modal logics
that use linear inequalities to express constraints between probabilities of events, the
number of successors in a Kripke model or, more generally, the measure of a successor
set. In each case, completeness was established with the help of coalgebraic semantics,
where we just had to show that a given set of (one-step) rules is one-step complete:
the actual statement of completeness then follows from the general (coalgebraic) theory.
As such, this paper tries to demonstrate the usefulness of the coalgebraic approach per
se – we did not develop the general theory of coalgebraic logics, but just used off-the-
shelf results to obtain completeness and complexity bounds. The semantics of graded
and stochastic modal logic was given here in terms of image finite Kripke frames and
bounded measures. It is an open problem whether the semantics can be extended to the
general case in a sound fashion.
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