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Abstract

Precontact logics are propositional modal logics that have been recently considered in
order to obtain decidable fragments of the region-based theories of space introduced by
De Laguna and Whitehead. We give the definition of Sahlqvist formulas to this region-
based setting and we prove correspondence and canonicity results. Together, these
results give rise to a completeness result for precontact logics that are axiomatized
by Sahlqvist axioms.
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1 Introduction

In modal logic, Sahlqvist formulas are modal formulas with remarkable prop-
erties [30,31]: the Sahlqvist correspondence theorem says that every Sahlqvist
formula corresponds to a first-order definable class of frames; the Sahlqvist
completeness theorem says that when Sahlqvist formulas are used as axioms
in a normal logic, the logic is complete with respect to the elementary class of
frames the axioms define. Roughly speaking, modal formulas in the Sahlqvist
fragment are implications the antecedents of which do not contain occurrences
of boxes taking scope over diamonds. As a result, their main characteristic
consists in this: second-order quantifier elimination is complete for their stan-
dard translation in a second-order setting [10,17].
The Sahlqvist fragment does not contain all modal formulas corresponding to
a first-order definable class of frames: there exists non-Sahlqvist formulas that
correspond to first-order conditions. Moreover, it is undecidable, given a modal
formula, to determine whether it has a first-order correspondent. As well, it is
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undecidable, given a first-order sentence, to determine whether it has a modal
correspondent. For more on this, see [8,9].
There is quite a lot of literature around Sahlqvist theorem, which roughly can
be divided into the following groups. A first group concerns the study of al-
gorithms performing second-order quantifier elimination, see [32] for a recent
account of this area. A second group deals with generalizations of Sahlqvist
theorem within the classical syntax and semantics of modal logic [21,34,35]. A
third group deals with generalization of Sahlqvist theorem to stronger or weaker
variants of modal language: hybrid logics [7], distributive modal logic [16],
polyadic modal languages [19,20], relevant modal logics [33], modal fixed point
logics [5]. This paper certainly belongs to this group.
Recently, in order to obtain decidable fragments of the region-based theories
of space introduced by De Laguna [28] and Whitehead [38], propositional lan-
guages with topological semantics have been considered [15,25,36,37]. The
main tools in the completeness proofs of the associated logics are the rep-
resentation theorems for precontact algebras and adjacency spaces presented
in [11,12,13,14]. At first sight, the modal nature of the logics in question is
not patently visible. Nevertheless, almost all known tools and techniques in
modal logic — e.g. the method of canonical models and the filtration method
— can be transferred to them with slight modifications for obtaining the above-
mentioned completeness proofs [1,2,3,4].
Hence, a natural question is to ask whether a Sahlqvist-like theory — i.e. a
theory that identifies a set of formulas that correspond to first-order definable
classes of frames and that define logics complete with respect to the elemen-
tary classes of frames they correspond to — can be elaborated on the setting of
the region-based propositional modal logics of space (RBPMLS). With the ob-
ject of answering this question, we give the definition of Sahlqvist formulas to
this RBPMLS setting and we prove correspondence and canonicity results. To-
gether, these results give rise to a completeness result for RBPMLS that are ax-
iomatized by Sahlqvist axioms. Note that the translation C(a, b) = 3u(b∧3a)
conservatively embeds RBPMLS into the basic modal language extended with
universal modality, hence the correspondence part for RBPMLS follows from
the classical Sahlqvist theorem. However, the completeness part for RBPMLS
is genuinely new, since it provides an inference in a relatively weak calculus for
every RBPMLS formula, which follows semantically from the initial ’Sahlqvist’
RBPMLS formula. We assume the reader is at home with tools and techniques
in modal logic. For more on this, see [6,27].

2 Syntax

The language is defined using a countable set BV of Boolean variables (with
typical members denoted by p, q, etc). We inductively define the set t(BV ) of
terms (with typical members denoted by a, b, etc) as follows:

• a ::= p | 0 | −a | (a ∪ b).
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The other Boolean constructs for RBPMLS terms are defined as usual: 1 for
−0 and (a ∩ b) for −(−a ∪ −b). A term a is positive iff a is built up from
Boolean variables using only 1, ∪ and ∩. We inductively define the set f(BV )
of formulas (with typical members denoted by φ, ψ, etc) as follows:

• φ ::= a ≡ b | C(a, b) | ⊥ | ¬φ | (φ ∨ ψ).

The other Boolean constructs for RBPMLS formulas are defined as usual: >
for ¬⊥, (φ ∧ ψ) for ¬(¬φ ∨¬ψ), (φ→ ψ) for (¬φ ∨ ψ) and (φ↔ ψ) for (¬(φ ∨
ψ)∨¬(¬φ∨¬ψ)). We obtain the formulas a 6≡ b and C̄(a, b) as abbreviations:

• a 6≡ b ::= ¬a ≡ b,
• C̄(a, b) ::= ¬C(a, b).

If a formula φ is built up from a 6≡ 0 and C(a, b) (where a and b are positive
terms) using only >, ∨ and ∧ then we say that φ is negation-free. A formula φ
is positive iff φ is built up from a 6≡ 0, −a ≡ 0, C(a, b) and C̄(−a,−b) (where
a and b are positive terms) using only >, ∨ and ∧. The notion of subterm
and the notion of subformula are standard. We adopt the standard rules for
omission of the parentheses. If a formula φ is an implication ψ → χ in which
ψ is negation-free and χ is positive then we say that φ is a Sahlqvist formula.
Let us consider the following 8 formulas:

(i) > → C(1, 1),

(ii) p 6≡ 0→ C(p, 1),

(iii) p 6≡ 0→ C(p, p),

(iv) C(p, q)→ C(q, p),

(v) C(p, q)→ C(p, r) ∨ C(−r, q),
(vi) p 6≡ 0 ∧ −p 6≡ 0→ C(p,−p),
(vii) (p ∪ q) ≡ 1 ∧ (p ∩ q) ≡ 0→ C(p, p) ∨ C(q, q),

(viii) (p ∩ −q) 6≡ 0→ C(p,−q) ∨ C(q,−q).
Obviously, the first 4 formulas are Sahlqvist formulas whereas the last 4 for-
mulas are not Sahlqvist formulas.

3 Kripke-type semantics

RBPMLS have 3 kinds of semantics:

• an algebraic semantics based on some classes of abstract contact algebras of
regions,

• a topological semantics based on concrete contact algebras of regions over
some classes of topological spaces,

• a Kripke-type semantics based on some classes of Kripke frames regarded as
adjacency spaces.

The main tools in the equivalence of these 3 kinds of semantics are the rep-
resentation theorems for precontact algebras and adjacency spaces presented
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in [11,12,13,14]. In this paper, seeing that we want to elaborate a Sahlqvist-like
theory on the setting of RBPMLS, we concentrate attention to the Kripke-type
semantics. A Kripke frame is an ordered pair F = (W,R) where W is a non-
empty set of possible worlds and R is a binary relation on W . A valuation
based on F is a function V assigning to each Boolean variable p a subset V (p)
of W . As usual, V induces a homomorphism (·)V assigning to each term a a
subset (a)V of W as follows:

• (p)V = V (p),

• (0)V = ∅,
• (−a)V = W \ (a)V ,

• (a ∪ b)V = (a)V ∪ (b)V .

We shall say that V is smaller than a valuation V ′ based on F , in symbols
V ≤ V ′, iff for all Boolean variables p, V (p) ⊆ V ′(p).
Lemma 3.1 Let V, V ′ be valuations based on F such that V ≤ V ′. For all
positive terms a, (a)V ⊆ (a)V

′
.

Proof. The proof is done by induction on a. 2

A Kripke model is an ordered triple M = (W,R, V ) where F = (W,R) is
a frame and V is a valuation based on F . The satisfiability of a formula φ in
M, in symbols M |= φ, is defined as follows:

• M |= a ≡ b iff (a)V = (b)V ,

• M |= C(a, b) iff there exists x, y ∈W such that xRy, x ∈ (a)V and y ∈ (b)V ,

• M 6|= ⊥,

• M |= ¬φ iff M 6|= φ,

• M |= φ ∨ ψ iff M |= φ or M |= ψ.

As a result, M |= a 6≡ b iff (a)V 6= (b)V and M |= C̄(a, b) iff for all x, y ∈ W ,
if xRy then x 6∈ (a)V or y 6∈ (b)V .

Lemma 3.2 Let V, V ′ be valuations based on F such that V ≤ V ′.
(i) For all negation-free formulas φ, if (F , V ) |= φ then (F , V ′) |= φ.

(ii) For all positive formulas φ, if (F , V ) |= φ then (F , V ′) |= φ.

Proof. Both items follow by induction on φ, using Lemma 3.1. 2

Let F be a frame. A formula φ is valid in F , in symbols F |= φ, iff for all
models M based on F , M |= φ.

4 Standard translation into a first-order language

In the above Kripke-type semantics, satisfaction is a binary relation between
models and formulas whereas in the semantics for the basic modal language,
satisfaction is a ternary relation between models, possible worlds and formulas.
Such a difference is illustrated by the following translation of our language into
a first-order language. Let L1(BV ) be the first-order language with equality
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which has the unary predicates P0, P1, etc corresponding to the Boolean vari-
ables p0, p1, etc in BV and the binary predicate RC corresponding to the modal
operator C. If u is a first-order variable and a is a term then the first-order
formula ST (u, a) is inductively defined as follows:

• ST (u, pn) = Pn(u),

• ST (u, 0) = ⊥,

• ST (u,−a) = ¬ST (u, a),

• ST (u, a ∪ b) = ST (u, a) ∨ ST (u, b).

If φ is a formula then the first-order sentence ST (φ) is inductively defined as
follows:

• ST (a ≡ b) = ∀u (ST (u, a)↔ ST (u, b)),

• ST (C(a, b)) = ∃u ∃v (RC(u, v) ∧ ST (u, a) ∧ ST (v, b)),

• ST (⊥) = ⊥,

• ST (¬φ) = ¬ST (φ),

• ST (φ ∨ ψ) = ST (φ) ∨ ST (ψ).

Proposition 4.1 Let M = (W,R, V ) be a model.

(i) For all terms a and for all x ∈W , x ∈ (a)V iff M |= ST (u, a)[x].

(ii) For all formulas φ, M |= φ iff M |= ST (φ).

Proof. The first item follows by induction on a and the second one follows by
induction on φ, using the first item. 2

Proposition 4.2 Let F = (W,R) be a frame. For all formulas φ, F |= φ iff
F |= ST (φ).

Proof. By Proposition 4.1. 2

Obviously, ST (φ) belongs to the 2-variable fragment of L1(BV ) for each for-
mula φ. Since the satisfiability problem for the 2-variable fragment of any
first-order language with equality is decidable in nondeterministic exponential
time [22,29], then the embedding of our language into L1(BV ) considered in
Proposition 4.2 implies that if C is a class of frames definable by a first-order
sentence with at most 2 variables then the satisfiability problem in models based
on C-frames for RBPMLS formulas is decidable in nondeterministic exponential
time.

5 Correspondence theorem

We shall say that a formula φ and a first-order sentence α of the first-order
language L1(∅) with equality which has the binary predicate RC corresponding
to the modal operator C are frame correspondents iff for all frames F = (W,R),
F |= φ iff F |= α.

Theorem 5.1 Let φ be a Sahlqvist formula. There exists a first-order sentence
α of the first-order language L1(∅) such that φ and α are frame correspondents.
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Moreover, α is effectively computable from φ.

Proof. Since φ is a Sahlqvist formula, then φ is an implication ψ → χ in
which ψ is negation-free and χ is positive. Without loss of generality, we may
assume that ψ is equal either to > or to a disjunction ψ1 ∨ . . . ∨ ψn of >-free
∨-free negation-free formulas. Consider a frame F = (W,R). Let p1, . . . , pN be
an enumeration of the Boolean variables occuring in χ and P1, . . . , PN be the
corresponding unary predicates. We need to consider the following 2 cases.
Case “ψ is equal to >”. The following properties are equivalent:

(i) F |= φ,

(ii) for all valuations V based on F , (F , V ) |= φ,

(iii) for all valuations V based on F , (F , V ) |= χ.

Let Vmin be the empty valuation. Since χ is positive, then by the second item
of Lemma 3.2, (iii) is equivalent to the following property:

(iv) (F , Vmin) |= χ.

By Proposition 4.1, (iv) is equivalent to the following property:

(v) (F , Vmin) |= ST (χ).

Since Vmin is definable in L1(∅) by Pm(·) ::= ⊥ for each m ∈ {1, . . . , N}, then
(v) is equivalent to the following property:

(vi) F |= θ(ST (χ)), θ being a substitution that replaces Pm(·) by ⊥ for each
m ∈ {1, . . . , N}.

As a result, one may take α to be θ(ST (χ)).
Case “ψ is equal to a disjunction ψ1∨. . .∨ψn of >-free ∨-free negation-
free formulas”. Let i ∈ {1, . . . , n}. Without loss of generality, we may
assume that ψi is equal to a conjunction of the form ai,1 6≡ 0 ∧ . . . ∧ ai,ki

6≡
0∧C(bi,1, ci,1)∧ . . .∧C(bi,li , ci,li) where all ai,? are equal to an intersection of
Boolean variables and all bi,?, ci,? are equal either to 1 or to an intersection of
Boolean variables. The following properties are equivalent:

(i) F |= ψi → χ,

(ii) for all valuations V based on F , (F , V ) |= ψi → χ,

(iii) for all valuations V based on F , if (F , V ) |= ψi then (F , V ) |= χ.

For all y1, z1, . . . , yli , zli ∈W , if y1Rz1, . . ., yliRzli then for all x1, . . . , xki
∈W ,

let Vi,min be a valuation such that for all m ∈ {1, . . . , N}, Vi,min(pm) = {xj :
1 ≤ j ≤ ki and pm occurs in ai,j}∪{yj : 1 ≤ j ≤ li and pm occurs in bi,j}∪{zj :
1 ≤ j ≤ li and pm occurs in ci,j}. By Proposition 4.1, the following properties
are equivalent:

(iv) (F , V ) |= ψi,

(v) (F , V ) |= ST (ψi),

(vi) (F , V ) |= ∃u1 ST (u1, ai,1)∧. . .∧∃uki
ST (uki

, ai,ki
)∧∃v1 ∃w1 (RC(v1, w1)∧

ST (v1, bi,1) ∧ ST (w1, ci,1)) ∧ . . . ∧ ∃vli ∃wli (RC(vli , wli) ∧ ST (vli , bi,li) ∧
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ST (wli , ci,li)),

(vii) there exists y1, z1, . . . , yli , zli ∈W such that y1Rz1, . . ., yliRzli and there
exists x1, . . . , xki ∈W such that (F , V ) |= ST (u1, ai,1)∧ . . .∧ST (uki , ai,ki)∧
(ST (v1, bi,1) ∧ ST (w1, ci,1)) ∧ . . . ∧ (ST (vli , bi,li) ∧ ST (wli , ci,li))[u1 :=
x1, . . . , uki

:= xki
, v1 := y1, w1 := z1, . . . , vli := yli , wli := zli ],

(viii) there exists y1, z1, . . . , yli , zli ∈W such that y1Rz1, . . ., yliRzli and there
exists x1, . . . , xki

∈W such that Vi,min ≤ V .

Since χ is positive, then by the second item of Lemma 3.2, (iii) is equivalent
to the following property:

(ix) for all y1, z1, . . . , yli , zli ∈ W , if y1Rz1, . . ., yliRzli then for all
x1, . . . , xki ∈W , (F , Vi,min) |= χ.

By Proposition 4.1, (ix) is equivalent to the following property:

(x) for all y1, z1, . . . , yli , zli ∈W , if y1Rz1, . . ., yliRzli then for all x1, . . . , xki ∈
W , (F , Vi,min) |= ST (χ).

Since Vi,min is definable in L1(∅) by Pm(·) ::=
∨
{· = uj : 1 ≤ j ≤ ki and

pm occurs in ai,j} ∨
∨
{· = vj : 1 ≤ j ≤ li and pm occurs in bi,j} ∨

∨
{· = wj :

1 ≤ j ≤ li and pm occurs in ci,j} for each m ∈ {1, . . . , N}, then (x) is equivalent
to the following properties:

(xi) for all y1, z1, . . . , yli , zli ∈ W , if y1Rz1, . . ., yliRzli then for all
x1, . . . , xki ∈W , F |= θi(ST (χ)), θi being a substitution that replaces Pm(·)
by

∨
{· = uj : 1 ≤ j ≤ ki and pm occurs in ai,j} ∨

∨
{· = vj : 1 ≤ j ≤ li and

pm occurs in bi,j} ∨
∨
{· = wj : 1 ≤ j ≤ li and pm occurs in ci,j} for each

m ∈ {1, . . . , N},
(xii) F |= ∀u1 . . . ∀uki

∀v1 ∀w1 . . . ∀vli ∀wli (RC(v1, w1)∧ . . .∧RC(vli , wli)→
θi(ST (χ))).

As a result, one may take α to be the conjunction of all
∀u1 . . . ∀uki

∀v1 ∀w1 . . . ∀vli∀wli (RC(v1, w1)∧ . . .∧RC(vli , wli)→ θi(ST (χ)))
for each 1 ≤ i ≤ n. 2

By way of examples, we determine the first-order sentences corresponding
to the 4 Sahlqvist formulas considered at the end of Section 2.
(i) Concerning the formula > → C(1, 1), its frame correspondent is the first-
order sentence ∃u′ ∃v′ (RC(u′, v′) ∧ ST (u′, 1) ∧ ST (v′, 1)). It is equivalent to
∃u′ ∃v′ RC(u′, v′).
(ii) As for the formula p 6≡ 0 → C(p, 1), its frame correspondent is the first-
order sentence ∀u θ(∃u′ ∃v′ (RC(u′, v′) ∧ ST (u′, p) ∧ ST (v′, 1))) where θ(P (·))
is · = u. It is equivalent to ∀u ∃v′ RC(u, v′).
(iii) Concerning the formula p 6≡ 0 → C(p, p), its frame correspondent is the
first-order sentence ∀u θ(∃u′ ∃v′ (RC(u′, v′) ∧ ST (u′, p) ∧ ST (v′, p))) where
θ(P (·)) is · = u. It is equivalent to ∀u RC(u, u).
(iv) As for the formula C(p, q) → C(q, p), its frame correspondent is the
first-order sentence ∀v ∀w (RC(v, w) → θ(∃u′ ∃v′ (RC(u′, v′) ∧ ST (u′, q) ∧
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ST (v′, p)))) where θ(P (·)) is · = v and θ(Q(·)) is · = w. It is equivalent to
∀v ∀w (RC(v, w)→ RC(w, v)).

6 Logics

We shall say that a set L of formulas is a logic iff

• L is closed under the rule of modus ponens,

• L is closed under the rule of uniform substitution,

• L contains all instances of tautologies of the classical propositional logic,

• L contains all instances of axioms for non-degenerate Boolean algebras in
terms of ≡,

• L contains all instances of the following 3 formulas:
· C(a, b)→ a 6≡ 0 ∧ b 6≡ 0,
· C(a ∪ b, c)↔ C(a, c) ∨ C(b, c),
· C(a, b ∪ c)↔ C(a, b) ∨ C(a, c).

We will use L, M , etc, for logics. Obviously, the set of all logics is a partially
ordered set with respect to set inclusion. Since the intersection of any collection
of logics is again a logic, then there exists a least logic, denoted Lmin. Note
that the greatest logic is the set of all formulas. Of course, a logic L is the set
of all formulas iff ⊥ ∈ L. A logic L will be defined to be consistent iff ⊥ 6∈ L.
We now come to an important convention of notation:

until the end of this paper, L will denote a consistent logic.

For all formulas φ, let L+ φ be the least logic containing L and φ.

7 Theories

We shall say that a set Γ of formulas is an L-theory iff

• Γ is closed under the rule of modus ponens,

• Γ contains L.

We will use Γ, ∆, etc, for L-theories. Let us be clear that the set of all L-theories
is a partially ordered set with respect to set inclusion. The least L-theory is
L and the greatest L-theory is the set of all formulas. Of course, an L-theory
Γ is the set of all formulas iff ⊥ ∈ Γ. An L-theory Γ will be defined to be
consistent iff ⊥ 6∈ Γ. Since each intersection of L-theories is an L-theory, then
there exists a least L-theory, denoted Γ⊕φ, containing a given L-theory Γ and
a given formula φ: namely, Γ ⊕ φ = {ψ: φ → ψ ∈ Γ}. Obviously, if ¬φ 6∈ Γ
then Γ⊕ φ is consistent. We shall say that an L-theory Γ is maximal iff for all
formulas φ, φ ∈ Γ or ¬φ ∈ Γ. In Lemma 7.2 below, the expression “maximal
consistent set of terms” refers to the notions of maximality and consistency in
Boolean logic which can be found in most elementary logic texts.

Lemma 7.1 Let Γ be a consistent L-theory. There exists a maximal consistent
L-theory ∆ such that Γ ⊆ ∆.

Proof. This is the Lindenbaum’s lemma, a standard result. 2
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Lemma 7.2 Let Γ be a maximal consistent L-theory.

(i) For all terms a, if a 6≡ 0 ∈ Γ then there exists a maximal consistent set x
of terms such that a ∈ x and for all terms a′, if a′ ∈ x then a′ 6≡ 0 ∈ Γ.

(ii) For all terms a, b, if C(a, b) ∈ Γ then there exists maximal consistent sets
x, y of terms such that a ∈ x, b ∈ y and for all terms a′, b′, if a′ ∈ x and
b′ ∈ y then C(a′, b′) ∈ Γ.

Proof. See [4]. 2

8 Canonical model

Let Γ be a maximal consistent L-theory. The canonical model for Γ is the
ordered triple MΓ = (WΓ, RΓ, VΓ) where:

• WΓ is the set of all maximal consistent sets x of terms such that for all terms
a, if a ∈ x then a 6≡ 0 ∈ Γ,

• RΓ is the binary relation on WΓ such that xRΓy iff for all terms a, b, if a ∈ x
and b ∈ y then C(a, b) ∈ Γ,

• VΓ is the function assigning to each Boolean variable p the subset VΓ(p) of
WΓ such that x ∈ VΓ(p) iff p ∈ x.

Lemma 8.1 below plays for our Kripke-type semantics the role usually played
by the truth lemma in the semantics for the basic modal language.

Lemma 8.1 (i) For all terms a, x ∈ (a)VΓ iff a ∈ x.

(ii) For all formulas φ, (WΓ, RΓ, VΓ) |= φ iff φ ∈ Γ.

Proof. The first item follows by induction on a and the second one follows by
induction on φ, using Lemma 7.2 and the first item. 2

9 Finite valuations and admissible valuations

Let Γ be a maximal consistent L-theory. The pair FΓ = (WΓ, RΓ) is called the
canonical frame for Γ. VΓ is called the canonical valuation for Γ. We shall say
that a valuation V based on FΓ is finite iff for all Boolean variables p, V (p) is a
finite subset of WΓ. A valuation V based on FΓ is said to be admissible iff for
all Boolean variables p, there exists a term a such that V (p) = (a)VΓ . For all
valuations V based on FΓ, let adm(V ) be the set of all admissible valuations
V ′ based on FΓ such that V ≤ V ′.

Lemma 9.1 Let V be an admissible valuation based on FΓ. For all φ ∈ L,
(FΓ, V ) |= φ.

Proof. Let φ ∈ L. Let p1, . . . , pn be an enumeration of the Boolean variables
occurring in φ. Since V is admissible, then there exists terms a1, . . . , an such
that V (p1) = (a1)VΓ , . . ., V (pn) = (an)VΓ . Obviously, for all terms b(p1, . . . , pn)
and for all formulas ψ(p1, . . . , pn):

• (b(p1, . . . , pn))V = (b(a1, . . . , an))VΓ ,

• (FΓ, V ) |= ψ(p1, . . . , pn) iff (FΓ, VΓ) |= ψ(a1, . . . , an).
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The first item follows by induction on b and the second one follows by induction
on ψ, using the first item. Since φ(p1, . . . , pn) ∈ L, then φ(a1, . . . , an) ∈ L.
Hence, φ(a1, . . . , an) ∈ Γ. By the second item of Lemma 8.1, (FΓ, VΓ) |=
φ(a1, . . . , an). By the second item above, (FΓ, V ) |= φ(p1, . . . , pn). 2

Lemma 9.2 Let A ⊆ WΓ. If A is finite then A ⊇
⋂
{(a)VΓ : a is a term such

that A ⊆ (a)VΓ}.
Proof. Suppose A is finite. Hence, there exists a nonnegative integer n such
that Card(A) = n. We need to consider the following 3 cases.
Case “n = 0”. Hence, A is empty. Thus, 0 is a term such that A ⊆ (0)VΓ .
Since (0)VΓ = ∅, then

⋂
{(a)VΓ : a is a term such that A ⊆ (a)VΓ} = ∅. There-

fore, A ⊇
⋂
{(a)VΓ : a is a term such that A ⊆ (a)VΓ}.

Case “n = 1”. Hence, there exists x ∈ WΓ such that A = {x}. By the first
item of Lemma 8.1, for all terms a, x ∈ (a)VΓ iff a ∈ x. Thus, the following
sets are equal:

•
⋂
{(a)VΓ : a is a term such that A ⊆ (a)VΓ},

•
⋂
{(a)VΓ : a is a term such that x ∈ (a)VΓ},

•
⋂
{(a)VΓ : a is a term such that a ∈ x}.

Obviously, x is the only element in
⋂
{(a)VΓ : a is a term such that a ∈ x}.

Therefore, A ⊇
⋂
{(a)VΓ : a is a term such that A ⊆ (a)VΓ}.

Case “n ≥ 2”. Hence, there exists x1, . . . , xn ∈ WΓ such that A =
{x1, . . . , xn}. For all i = 1 . . . n, by the second case, {xi} ⊇

⋂
{(a)VΓ : a is a term

such that {xi} ⊆ (a)VΓ}. If A 6⊇
⋂
{(a)VΓ : a is a term such that A ⊆ (a)VΓ}

then there exists x ∈ WΓ such that x 6∈ A and x ∈
⋂
{(a)VΓ : a is a term such

that A ⊆ (a)VΓ}. Since x 6∈ A, then for all i = 1 . . . n, x 6= xi and there exists a
term ai such that xi ∈ (ai)

VΓ and x 6∈ (ai)
VΓ . Thus, x 6∈ (a1∪ . . .∪an)VΓ . Since

for all i = 1 . . . n, xi ∈ (ai)
VΓ , then A ⊆ (a1 ∪ . . . ∪ an)VΓ . Since x ∈

⋂
{(a)VΓ :

a is a term such that A ⊆ (a)VΓ}, then x ∈ (a1 ∪ . . .∪ an)VΓ : a contradiction.2

Lemma 9.3 Let V be a valuation based on FΓ. If V is finite then V ≥
⋂
{V ′:

V ′ ∈ adm(V )}.
Proof. Suppose V is finite. If V 6≥

⋂
{V ′: V ′ ∈ adm(V )} then there exists

a Boolean variable p such that V (p) 6⊇
⋂
{V ′(p): V ′ ∈ adm(V )}. Hence,

there exists x ∈ WΓ such that x 6∈ V (p) and x ∈
⋂
{V ′(p): V ′ ∈ adm(V )}.

Since V is finite, then by Lemma 9.2, V (p) ⊇
⋂
{(a)VΓ : a is a term such

that V (p) ⊆ (a)VΓ}. Since x 6∈ V (p), then there exists a term a such that
V (p) ⊆ (a)VΓ and x 6∈ (a)VΓ . Let V ′ be the valuation based on FΓ such that
V ′(p) = (a)VΓ and V ′(q) = WΓ for every Boolean variable q distinct from p.
Obviously, V ′ ∈ adm(V ). Since x ∈

⋂
{V ′(p): V ′ ∈ adm(V )}, then x ∈ V ′(p).

Since V ′(p) = (a)VΓ , then x ∈ (a)VΓ : a contradiction. 2

Lemma 9.4 Let V be a valuation based on FΓ. If V is finite then for all
positive terms a, (a)V ⊇

⋂
{(a)V

′
: V ′ ∈ adm(V )}.

Proof. Suppose V is finite and let a be a positive term. The proof is done by
induction on a.
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Case “a = p”. Since V is finite, then by Lemma 9.3, V (p) ⊇
⋂
{V ′(p):

V ′ ∈ adm(V )}. Hence, (a)V ⊇
⋂
{(a)V

′
: V ′ ∈ adm(V )}.

Case “a = 1”. Left to the reader.
Case “a = b ∩ c” where b and c are positive terms. Left to the reader.
Case “a = b ∪ c” where b and c are positive terms. By induction hy-
pothesis, (b)V ⊇

⋂
{(b)V ′

: V ′ ∈ adm(V )} and (c)V ⊇
⋂
{(c)V ′

: V ′ ∈ adm(V )}.
Hence, it suffices to demonstrate that

⋂
{(b)V ′

: V ′ ∈ adm(V )} ∪
⋂
{(c)V ′

:
V ′ ∈ adm(V )} ⊇

⋂
{(b)V ′ ∪ (c)V

′
: V ′ ∈ adm(V )}. Let x ∈

⋂
{(b)V ′ ∪ (c)V

′
:

V ′ ∈ adm(V )}. If x 6∈
⋂
{(b)V ′

: V ′ ∈ adm(V )}∪
⋂
{(c)V ′

: V ′ ∈ adm(V )} then
x 6∈

⋂
{(b)V ′

: V ′ ∈ adm(V )} and x 6∈
⋂
{(c)V ′

: V ′ ∈ adm(V )}. Thus, there
exists V ′b ∈ adm(V ) such that x 6∈ (b)V

′
b and there exists V ′c ∈ adm(V ) such

that x 6∈ (c)V
′
c . Let V ′ = V ′b ∩ V ′c . Obviously, V ′ ∈ adm(V ), V ′ ≤ V ′b and

V ′ ≤ V ′c . Since b and c are positive terms, then by Lemma 3.1, (b)V
′ ⊆ (b)V

′
b

and (c)V
′ ⊆ (c)V

′
c . Since V ′ ∈ adm(V ) and x ∈

⋂
{(b)V ′∪(c)V

′
: V ′ ∈ adm(V )},

then x ∈ (b)V
′

or x ∈ (c)V
′
. Since (b)V

′ ⊆ (b)V
′
b and (c)V

′ ⊆ (c)V
′
c , then

x ∈ (b)V
′
b or x ∈ (c)V

′
c : a contradiction. 2

Lemma 9.5 Let V be a valuation based on FΓ. If V is finite then for all
positive terms a, b, ((a)V ×WΓ)∪(WΓ×(b)V ) ⊇

⋂
{((a)V

′×WΓ)∪(WΓ×(b)V
′
):

V ′ ∈ adm(V )}.

Proof. Suppose V is finite and let a and b be positive terms. If ((a)V ×WΓ)∪
(WΓ × (b)V ) 6⊇

⋂
{((a)V

′ × WΓ) ∪ (WΓ × (b)V
′
): V ′ ∈ adm(V )} then there

exists x, y ∈ WΓ such that x 6∈ (a)V , y 6∈ (b)V and x ∈ (a)V
′

or y ∈ (b)V
′

for each V ′ ∈ adm(V ). Let ∼= be the binary relation on adm(V ) defined as
follows: V ′ ∼= V ′′ iff for all Boolean variables p occurring in a, V ′(p) = V ′′(p).
Obviously, ∼= is an equivalence relation on adm(V ). Moreover, adm(V )|∼=, the
quotient set of adm(V ) modulo ∼=, is countable. Hence, there exists an ω-
sequence (| V ′n |)n∈N of equivalence classes modulo ∼= enumerating adm(V )|∼=.
Let (| V ′′n |)n∈N be the ω-sequence of equivalence classes modulo ∼= defined as
follows: if n = 0 then | V ′′n |=| V ′0 | else | V ′′n |=| V ′′n−1 ∩ V ′n |. Since x ∈ (a)V

′

or y ∈ (b)V
′

for each V ′ ∈ adm(V ), then x ∈ (a)V
′′
n or y ∈ (b)V

′′
n for each

n ∈ N. Since V is finite and a and b are positive terms, then by construction of
(| V ′′n |)n∈N and by Lemma 9.4, (a)V ⊇

⋂
{(a)V

′′
n : n ∈ N} and (b)V ⊇

⋂
{(b)V ′′

n :
n ∈ N}. Since x ∈ (a)V

′′
n or y ∈ (b)V

′′
n for each n ∈ N, then by construction of

(| V ′′n |)n∈N and by Lemma 3.1, x ∈ (a)V
′′
n for each n ∈ N or y ∈ (b)V

′′
n for each

n ∈ N. Since (a)V ⊇
⋂
{(a)V

′′
n : n ∈ N} and (b)V ⊇

⋂
{(b)V ′′

n : n ∈ N}, then
x ∈ (a)V or y ∈ (b)V : a contradiction. 2

Lemma 9.6 Let V be a finite valuation based on FΓ. Let a be a positive term
such that for all V ′ ∈ adm(V ), (a)V

′ 6= ∅. Then (a)V 6= ∅.

Proof. Let ∼=, (| V ′n |)n∈N and (| V ′′n |)n∈N be defined as in the proof of
Lemma 9.5. Since (a)V

′ 6= ∅ for each V ′ ∈ adm(V ), then (a)V
′′
n 6= ∅ for

each n ∈ N. Since V is finite and a is a positive term, then by construction
of (| V ′′n |)n∈N and by Lemma 9.4, (a)V ⊇

⋂
{(a)V

′′
n : n ∈ N}. Since V ′′n is ad-

missible for each n ∈ N, then there exists a term an such that (a)V
′′
n = (an)VΓ
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for each n ∈ N. Remark that (a0)VΓ ⊇ (a1)VΓ ⊇ . . .. Since (a)V
′′
n 6= ∅ for

each n ∈ N, then (an)VΓ 6= ∅ for each n ∈ N. Since (a0)VΓ ⊇ (a1)VΓ ⊇ . . .,
then there exists x ∈ WΓ such that an ∈ x for each n ∈ N. Thus,

⋂
{(an)VΓ :

n ∈ N} 6= ∅. Therefore,
⋂
{(a)V

′′
n : n ∈ N} 6= ∅. Since (a)V ⊇

⋂
{(a)V

′′
n : n ∈ N},

then (a)V 6= ∅. 2

Lemma 9.7 Let V be a finite valuation based on FΓ. Let a and b be positive
terms such that for all V ′ ∈ adm(V ), there exists x, y ∈ WΓ such that xRΓy,
x ∈ (a)V

′
and y ∈ (b)V

′
. Then there exists x, y ∈WΓ such that xRΓy, x ∈ (a)V

and y ∈ (b)V .

Proof. Let ∼=, (| V ′n |)n∈N and (| V ′′n |)n∈N be defined as in the proof of
Lemma 9.5. Since there exists x, y ∈ WΓ such that xRΓy, x ∈ (a)V

′
and

y ∈ (b)V
′

for each V ′ ∈ adm(V ), then there exists x, y ∈ WΓ such that xRΓy,
x ∈ (a)V

′′
n and y ∈ (b)V

′′
n for each n ∈ N. Since V is finite and a and b

are positive terms, then by construction of (| V ′′n |)n∈N and by Lemma 9.4,
(a)V ⊇

⋂
{(a)V

′′
n : n ∈ N} and (b)V ⊇

⋂
{(b)V ′′

n : n ∈ N}. Since V ′′n is admis-
sible for each n ∈ N, then there exists terms an, bn such that (a)V

′′
n = (an)VΓ

and (b)V
′′
n = (bn)VΓ for each n ∈ N. Remark that (a0)VΓ ⊇ (a1)VΓ ⊇ . . . and

(b0)VΓ ⊇ (b1)VΓ ⊇ . . .. Since there exists x, y ∈WΓ such that xRΓy, x ∈ (a)V
′′
n

and y ∈ (b)V
′′
n for each n ∈ N, then there exists x, y ∈ WΓ such that xRΓy,

x ∈ (an)VΓ and y ∈ (bn)VΓ for each n ∈ N. Since (a0)VΓ ⊇ (a1)VΓ ⊇ . . . and
(b0)VΓ ⊇ (b1)VΓ ⊇ . . ., then there exists x, y ∈ WΓ such that xRΓy, an ∈ x
and bn ∈ y for each n ∈ N. Thus, x ∈

⋂
{(an)VΓ : n ∈ N} and y ∈

⋂
{(bn)VΓ :

n ∈ N}. Therefore, x ∈
⋂
{(a)V

′′
n : n ∈ N} and y ∈

⋂
{(b)V ′′

n : n ∈ N}. Since
(a)V ⊇

⋂
{(a)V

′′
n : n ∈ N} and (b)V ⊇

⋂
{(b)V ′′

n : n ∈ N}, then x ∈ (a)V and
y ∈ (b)V . 2

Lemma 9.8 Let V be a valuation based on FΓ. Let φ be a negation-free for-
mula such that (FΓ, V ) |= φ. Then there exists a finite valuation V0 based on
FΓ such that V0 ≤ V and (FΓ, V0) |= φ.

Proof. Without loss of generality, we may assume that φ is equal either to
> or to a disjunction φ1 ∨ . . . ∨ φn of >-free ∨-free negation-free formulas. In
the former case, let V0 be the empty valuation. In the latter case, there exists
i ∈ {1, . . . , n} such that (FΓ, V ) |= φi. Since we may also assume that φi is
equal to a conjunction of the form a1 6≡ 0∧. . .∧ak 6≡ 0∧C(b1, c1)∧. . .∧C(bl, cl)
where all a? are equal to an intersection of Boolean variables and all b?, c?
are equal either to 1 or to an intersection of Boolean variables, then there
exists x1, . . . , xk, y1, z1, . . . , yl, zl ∈ WΓ such that x1 ∈ (a1)V , . . ., x1 ∈ (ak)V ,
y1 ∈ (b1)V , z1 ∈ (c1)V and y1RΓz1, . . ., yl ∈ (bl)

V , zl ∈ (cl)
V and ylRΓzl.

Let V0 be the finite valuation based on FΓ such that for all Boolean variables
p, V0(p) = V (p) ∩ ({x1, . . . , xk} ∪ {y1, z1, . . . , yl, zl}). Obviously, V0 ≤ V and
(FΓ, V0) |= φ. 2

Lemma 9.9 Let V be a finite valuation based on FΓ. Let φ be a positive
formula such that for all V ′ ∈ adm(V ), (FΓ, V

′) |= φ. Then (FΓ, V ) |= φ.

Proof. The proof is done by induction on φ.
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Case “φ = a 6≡ 0”. Since (FΓ, V
′) |= φ for each V ′ ∈ adm(V ), then (a)V

′ 6= ∅
for each V ′ ∈ adm(V ). Since a is a positive term, then by Lemma 9.6, (a)V 6= ∅.
Hence, (FΓ, V ) |= φ.
Case “φ = −a ≡ 0”. Since (FΓ, V

′) |= φ for each V ′ ∈ adm(V ), then
(a)V

′
= WΓ for each V ′ ∈ adm(V ). Since V is finite and a is a positive term,

then by Lemma 9.4, (a)V = WΓ. Hence, (FΓ, V ) |= φ.
Case “φ = C(a, b)”. Since (FΓ, V

′) |= φ for each V ′ ∈ adm(V ), then there
exists x, y ∈ WΓ such that xRΓy, x ∈ (a)V

′
and y ∈ (b)V

′
for each V ′ ∈

adm(V ). Since a and b are positive terms, then by Lemma 9.7, there exists
x, y ∈WΓ such that xRΓy, x ∈ (a)V and y ∈ (b)V . Hence, (FΓ, V ) |= φ.
Case “φ = C̄(−a,−b)”. Since (FΓ, V

′) |= φ for each V ′ ∈ adm(V ), then for
all x, y ∈ WΓ, if xRΓy then x ∈ (a)V

′
or y ∈ (b)V

′
for each V ′ ∈ adm(V ).

Since V is finite and a and b are positive terms, then by Lemma 9.5, for all
x, y ∈WΓ, if xRΓy then x ∈ (a)V or y ∈ (b)V . Hence, (FΓ, V ) |= φ.
Case “φ = >”. Left to the reader.
Case “φ = ψ∨χ” where ψ and χ are positive formulas. Let ∼=, (| V ′n |)n∈N
and (| V ′′n |)n∈N be defined as in the proof of Lemma 9.5. Since (FΓ, V

′) |= φ
for each V ′ ∈ adm(V ), then (FΓ, V

′′
n ) |= φ for each n ∈ N. Since ψ and

χ are positive, then by construction of (| V ′′n |)n∈N and by the second item of
Lemma 3.2, (FΓ, V

′′
n ) |= ψ for each n ∈ N or (FΓ, V

′′
n ) |= χ for each n ∈ N. Since

ψ and χ are positive, then by construction of (| V ′′n |)n∈N and by the second
item of Lemma 3.2, (FΓ, V

′) |= ψ for each V ′ ∈ adm(V ) or (FΓ, V
′) |= χ for

each V ′ ∈ adm(V ). Hence, by induction hypothesis, (FΓ, V ) |= φ.
Case “φ = ψ ∧ χ” where ψ and χ are positive formulas. Left to the
reader. 2

10 Completeness theorem

We shall say that L is canonical iff for all maximal consistent L-theories Γ,
FΓ |= L.

Theorem 10.1 Let φ be a Sahlqvist formula. If L is canonical then L + φ is
canonical.

Proof. Suppose L is canonical. If L + φ is not canonical then there exists a
maximal consistent L+φ-theory Γ such that FΓ 6|= L+φ. Hence, Γ is a maximal
consistent L-theory such that FΓ 6|= L or FΓ 6|= φ. Since L is canonical, then
FΓ |= L. Since FΓ 6|= L or FΓ 6|= φ, then FΓ 6|= φ. Thus, there exists a valuation
V based on FΓ such that (FΓ, V ) 6|= φ. Since φ is a Sahlqvist formula, then φ
is an implication ψ → χ in which ψ is negation-free and χ is positive. Since
(FΓ, V ) 6|= φ, then (FΓ, V ) |= ψ and (FΓ, V ) 6|= χ. Since ψ is negation-free, then
by Lemma 9.8, there exists a finite valuation V0 based on FΓ such that V0 ≤ V
and (FΓ, V0) |= ψ. Since χ is positive and (FΓ, V ) 6|= χ, then by the second
item of Lemma 3.2, (FΓ, V0) 6|= χ. Since V0 is finite and χ is positive, then
by Lemma 9.9, (FΓ, V

′) 6|= χ for some V ′ ∈ adm(V0). Since ψ is negation-free
and (FΓ, V0) |= ψ, then by Lemma 3.2, (FΓ, V

′) |= ψ. Since V ′ is admissible
and φ ∈ L + φ, then by Lemma 9.1, (FΓ, V

′) |= φ. Since (FΓ, V
′) |= ψ, then
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(FΓ, V
′) |= χ: a contradiction. 2

As a result,

Theorem 10.2 Let φ be a Sahlqvist formula and α be the first-order sentence
of the first-order language L1(∅) that corresponds to it by Theorem 5.1. For all
formulas ψ, ψ ∈ Lmin +φ iff for all frames F = (W,R), if F |= α then F |= ψ.

Proof. Firstly, let us prove the direction from left to right. Let ψ be a formula.
If ψ ∈ Lmin + φ then let F = (W,R) be a frame such that F |= α. Hence, by
Theorem 5.1, F |= φ. Since ψ ∈ Lmin +φ, then there exists a proof of ψ in the
axiomatic system based on the rules and the instances of formulas considered
at the beginning of Section 6 and φ. By induction on the length of this proof,
one can show that F |= ψ.
Secondly, let us prove the direction from right to left. Let ψ be a formula. If
ψ 6∈ Lmin + φ then (Lmin + φ)⊕¬ψ is a consistent (Lmin + φ)-theory. Hence,
by Lemma 7.1, there exists a maximal consistent (Lmin + φ)-theory Γ such
that (Lmin + φ) ⊕ ¬ψ ⊆ Γ. Now, it suffices to demonstrate that FΓ |= α and
FΓ 6|= ψ. Since φ is a Sahlqvist formula, then by Theorem 10.1, Lmin + φ is
canonical. Thus, FΓ |= φ. Therefore, by Theorem 5.1, FΓ |= α. Since ¬ψ ∈ Γ,
then ψ 6∈ Γ. Consequently, by Lemma 8.1, MΓ 6|= ψ. Hence, FΓ 6|= ψ. 2

11 Conclusion

As we already said, the last 4 formulas considered at the end of Section 2 are
not Sahlqvist formulas. However, there could be the possibility of finding 4
Sahlqvist formulas corresponding to them. At this point, it might be useful to
remark that the first of these 4 formulas, namely C(p, q)→ C(p, r)∨C(−r, q),
corresponds to a first-order property whereas the last 3 of them, namely
p 6≡ 0 ∧ −p 6≡ 0 → C(p,−p), (p ∪ q) ≡ 1 ∧ (p ∩ q) ≡ 0 → C(p, p) ∨ C(q, q)
and (p ∩ −q) 6≡ 0 → C(p,−q) ∨ C(q,−q), corresponds to second-order prop-
erties. For more on this, see [3,4]. Hence, a first question presents itself: the
decidability of determining whether a given RBPMLS formula is equivalent to
a Sahlqvist RBPMLS formula.
Important problems are the so-called algorithmic problems in correspondence
theory: given a RBPMLS formula, determine whether it has a first-order cor-
respondent; given a first-order sentence, determine whether it has a RBPMLS
correspondent. In modal logic, such problems have been proved to be unde-
cidable by Chagrova in 1989. For more on this, see [8,9]. Chagrova’s proof of
the undecidability of modal definability of first-order sentences can be almost
reproduced word for word in the setting of RBPMLS (Tinko Tinchev, personal
communication, Sofia (Bulgaria), February 24, 2012). Hence, a second ques-
tion presents itself: the decidability of determining whether a given RBPMLS
formula corresponds to a first-order sentence.
The undecidability of RBPMLS definability of first-order sentences shows that
any sufficient condition for RBPMLS definability is very interesting by itself.
In modal logic, Kracht formulas are the first-order counterparts of Sahlqvist
formulas [26]. By means of an algorithm constructing a Sahlqvist formula from
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a given Kracht formula, one can axiomatize validity in such and such elemen-
tary class of frames determined by Kracht formulas. Recently, Kracht theorem
has been extended to the class of generalized Sahlqvist formulas introduced
by Goranko and Vakarelov [20]. For more on this, see [23,24]. Hence, a third
question presents itself: the definition of Kracht formulas in the setting of
RBPMLS.
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